Spelling suggestions: "subject:"dichtefunktionaltheorie."" "subject:"transaktionskostentheorie.""
1 |
Schwache Randwertprobleme von Systemen elliptischen Charakters auf konischen Gebieten / Weak boundary value problems of linear elliptic systems on conical domainsWinkler, Ralf January 2008 (has links) (PDF)
In der vorliegenden Arbeit werden lineare Systeme elliptischer partieller Differentialgleichungen in schwacher Formulierung auf konischen Gebieten untersucht. Auf einem zunächst unbeschränkten Kegelgebiet betrachten wir den Fall beschränkter und nur von den Winkelvariablen abhängiger Koeffizientenfunktionen. Die durch selbige definierte Bilinearform genüge einer Gårdingschen Ungleichung. In gewichteten Sobolevräumen werden Existenz- und Eindeutigkeitsfragen geklärt, wobei das Problem mittels Fouriertransformation auf eine von einem komplexen Parameter abhängige Familie T(·) von Fredholmoperatoren zurückgeführt wird. Unter Anwendung des Residuenkalküls gewinnen wir eine Darstellung der Lösung in Form einer Zerlegung in einen glatten Anteil einerseits sowie eine endliche Summe von Singulärfunktionen andererseits. Durch Abschneidetechniken werden die gewonnenen Erkenntnisse auf den Fall schwach formulierter elliptischer Systeme auf beschränkten Kegelgebieten unter Formulierung in gewöhnlichen, nicht-gewichteten Sobolevräumen angewendet. Die für Regularitätsfragen maßgeblichen Eigenwerte der Operatorfunktion T mit minimalem positiven Imaginärteil werden im letzten Kapitel der Arbeit am Beispiel der ebenen elastischen Gleichungen numerisch bestimmt. / In the present PhD thesis we investigate systems of linear partial elliptic equations in weak formulation on conical domains. For an unbounded cone, first, we study the case of bounded and radially constant coefficient functions. The so defined bilinear form is supposed to satisfy a (local) Gårding inequality. In weighted Sobolev spaces we study questions of existence and uniqueness of solutions. In this context the problem is Fourier-transformed onto a set of smaller problems, represented by Fredholm operators T(·) that holomorphically depend on a complex parameter. Via the residual theorem we yield a decomposition of the solution into a regular part and a finite sum of singular functions. Using cut-off techniques we are able to transfer the preceeding results onto the case of weak formulated linear elliptic systems on bounded cones under restriction to usual, non weighted Sobolev spaces. In the last chapter, the eigenvalues of T with minimal positive imaginary part, which are responsible for regularity properties, are numeriaclly determined for the example of the plane Elastic Equations.
|
2 |
Nonlinear Riemann-Hilbert ProblemsSemmler, Gunter 14 December 2009 (has links) (PDF)
Riemann-Hilbert-Probleme sind Randwertaufgaben für im Einheitskreis $\mathbb D$ holomorphe Funktionen $w$, deren Randwerte $w(t)$ auf gewissen Kurven $M_t$ liegen sollen. Ein Teil der Untersuchungen ist dem Fall explizit gegebener Kurven gewidmet. Dabei werden bekannte Resultate über glatte Kurven auf stetige Restriktionskurven erweitert, und die Existenz von Lösungen in gewissen Hardy-Räumen gezeigt. Die Eindeutigkeitsfrage führt auf ein Gegenbeispiel, das zugleich eine Vermutung aus einer Dissertation von Belch widerlegt. Der andere Teil der Untersuchungen ist dem klassischen Fall geschlossener Restriktionskurven gewidmet. Hier steht statt der Abschwächung von Glattheitsvoraussetzungen die Formulierung geeigneter Nebenbedingungen im Mittelpunkt. Die Abhängigkeit der Lösung von Zusatzbedingungen erweist sich als Verallgemeinerung des Verhaltens von Blaschkeprodukten. Für drei Interpolationpunkte kann charakterisiert werden, wann durch sie eine Lösung mit Windungszahl 1 verläuft, durch $k$ Interpolationspunkte wird die Existenz einer Lösung mit Windungszahl $k-1$ gezeigt.
|
3 |
Nonlinear Riemann-Hilbert ProblemsSemmler, Gunter 13 December 2004 (has links)
Riemann-Hilbert-Probleme sind Randwertaufgaben für im Einheitskreis $\mathbb D$ holomorphe Funktionen $w$, deren Randwerte $w(t)$ auf gewissen Kurven $M_t$ liegen sollen. Ein Teil der Untersuchungen ist dem Fall explizit gegebener Kurven gewidmet. Dabei werden bekannte Resultate über glatte Kurven auf stetige Restriktionskurven erweitert, und die Existenz von Lösungen in gewissen Hardy-Räumen gezeigt. Die Eindeutigkeitsfrage führt auf ein Gegenbeispiel, das zugleich eine Vermutung aus einer Dissertation von Belch widerlegt. Der andere Teil der Untersuchungen ist dem klassischen Fall geschlossener Restriktionskurven gewidmet. Hier steht statt der Abschwächung von Glattheitsvoraussetzungen die Formulierung geeigneter Nebenbedingungen im Mittelpunkt. Die Abhängigkeit der Lösung von Zusatzbedingungen erweist sich als Verallgemeinerung des Verhaltens von Blaschkeprodukten. Für drei Interpolationpunkte kann charakterisiert werden, wann durch sie eine Lösung mit Windungszahl 1 verläuft, durch $k$ Interpolationspunkte wird die Existenz einer Lösung mit Windungszahl $k-1$ gezeigt.
|
4 |
Die Anwendung der hyperkomplexen Funktionentheorie auf die Lösung partieller DifferentialgleichungenKähler, Uwe 29 September 1998 (has links) (PDF)
In der vorliegenden Arbeit wird die Methode der Anwendung der hyperkomplexen Funktionentheorie
zur Behandlung partieller Differentialgleichungen über beschränkten Gebieten unter Benutzung
einer orthogonalen Zerlegung des Raumes L_2(U) verallgemeinert. Zum einen kann diese Zerlegung
als direkte Zerlegung über dem Raum L_p(G),p>1, verallgemeinert werden, was die Untersuchung
partieller Differentialgleichungen über allgemeinen Sobolev-Räumen W_p^k(G),p>1,k natürliche Zahl,
ermöglicht. Dies wird am Beispiel des Stokes-Problems demonstriert. Zum anderen wird ein modifizierter
Cauchy-Kern über unbeschränkten Gebieten eingeführt, deren Komplement eine nichtleere offene Menge
enthält. Grundlegende Resultate der Cliffordanalysis über beschränkten Gebieten werden auf diese
Situation verallgemeinert und eine orthogonale Zerlegung des Raumes L_2(G) bewiesen. Diese Resultate
werden im weiteren dazu benutzt, das stationäre Stokes- bzw. Navier-Stokes-Problem in dem allgemeinen
Fall eines unbeschränkten Gebietes zu untersuchen. Im weiteren wird gezeigt, dass sich die entwickelten
Methoden auch auf partielle Differentialgleichungen höherer Ordnung anwenden lassen. Dies wird am
Beispiel der biharmonischen Gleichung mit Randbedingungen, die Komponenten in Normalenrichtung und
tangentieller Richtung besitzen, demonstriert. Am Ende beschäftigen wir uns mit der Verallgemeinerung
der komplexen Methoden von Vekua. Dazu werden hyperkomplexe Verallgemeinerungen des komplexen Pi-Operators
untersucht und auf die Lösung von hyperkomplexen Beltramigleichungen angewandt. / A modified Cauchy kernel is introduced over unbounded domains whose complement contain non-empty open sets.
Basic results on Clifford analysis over bounded domains are now carried over to this more general context.
In the end boundary value problems, e.g. for the Stokes-system or the Navier-Stokes-system, will be studied
in the case of an unbounded domain without using weighted Sobolev spaces. In the latter part of this paper
we deal with hypercomplex generalizations of the complex Pi-operator which turn out to have most of the useful
properties of their complex origin. Afterwards the application of this operator to the solution of hypercomplex
Beltrami equations will be studied.
|
5 |
Die Anwendung der hyperkomplexen Funktionentheorie auf die Lösung partieller DifferentialgleichungenKähler, Uwe 01 September 1998 (has links)
In der vorliegenden Arbeit wird die Methode der Anwendung der hyperkomplexen Funktionentheorie
zur Behandlung partieller Differentialgleichungen über beschränkten Gebieten unter Benutzung
einer orthogonalen Zerlegung des Raumes L_2(U) verallgemeinert. Zum einen kann diese Zerlegung
als direkte Zerlegung über dem Raum L_p(G),p>1, verallgemeinert werden, was die Untersuchung
partieller Differentialgleichungen über allgemeinen Sobolev-Räumen W_p^k(G),p>1,k natürliche Zahl,
ermöglicht. Dies wird am Beispiel des Stokes-Problems demonstriert. Zum anderen wird ein modifizierter
Cauchy-Kern über unbeschränkten Gebieten eingeführt, deren Komplement eine nichtleere offene Menge
enthält. Grundlegende Resultate der Cliffordanalysis über beschränkten Gebieten werden auf diese
Situation verallgemeinert und eine orthogonale Zerlegung des Raumes L_2(G) bewiesen. Diese Resultate
werden im weiteren dazu benutzt, das stationäre Stokes- bzw. Navier-Stokes-Problem in dem allgemeinen
Fall eines unbeschränkten Gebietes zu untersuchen. Im weiteren wird gezeigt, dass sich die entwickelten
Methoden auch auf partielle Differentialgleichungen höherer Ordnung anwenden lassen. Dies wird am
Beispiel der biharmonischen Gleichung mit Randbedingungen, die Komponenten in Normalenrichtung und
tangentieller Richtung besitzen, demonstriert. Am Ende beschäftigen wir uns mit der Verallgemeinerung
der komplexen Methoden von Vekua. Dazu werden hyperkomplexe Verallgemeinerungen des komplexen Pi-Operators
untersucht und auf die Lösung von hyperkomplexen Beltramigleichungen angewandt. / A modified Cauchy kernel is introduced over unbounded domains whose complement contain non-empty open sets.
Basic results on Clifford analysis over bounded domains are now carried over to this more general context.
In the end boundary value problems, e.g. for the Stokes-system or the Navier-Stokes-system, will be studied
in the case of an unbounded domain without using weighted Sobolev spaces. In the latter part of this paper
we deal with hypercomplex generalizations of the complex Pi-operator which turn out to have most of the useful
properties of their complex origin. Afterwards the application of this operator to the solution of hypercomplex
Beltrami equations will be studied.
|
6 |
A Quaternionic Version Theory related to Spheroidal FunctionsLeitão da Cruz Morais, João Pedro 11 January 2023 (has links)
In dieser Arbeit wird eine neue Theorie der quaternionischen Funktionen vorgestellt, welche das Problem der Bestapproximation von Familien prolater und oblater sphäroidalen Funktionen im Hilberträumen behandelt.
Die allgemeine Theorie beginnt mit der expliziten Konstruktion von orthogonalen Basen für Räume, definiert auf sphäroidalen Gebieten mit beliebiger Exzentrizität, deren Elemente harmonische, monogene und kontragene Funktionen sind und durch die Form der Gebiete parametrisiert werden. Eine detaillierte Studie dieser grundlegenden Elemente wird in dieser Arbeit durchgeführt. Der Begriff der kontragenen Funktion hängt vom Definitionsbereich ab und ist daher keine lokale Eigenschaft, während die Begriffe der harmonischen und monogenen Funktionen lokal sind. Es werden verschiedene Umwandlungsformeln vorgestellt, die Systeme harmonischer, monogener und kontragener Funktionen auf Sphäroiden unterschiedlicher Exzentrizität in Beziehung setzen. Darüber hinaus wird die Existenz gemeinsamer nichttrivialer kontragener Funktionen für Sphäroide jeglicher Exzentrizität gezeigt.
Der zweite wichtige Beitrag dieser Arbeit betrifft eine quaternionische Raumfrequenztheorie für bandbegrenzte quaternionische Funktionen. Es wird eine neue Art von quaternionischen Signalen vorgeschlagen, deren Energiekonzentration im Raum und in den Frequenzbereichen unter der quaternionischen Fourier-Transformation maximal ist. Darüber hinaus werden diese Signale im Kontext der Spektralkonzentration als Eigenfunktionen eines kompakten und selbstadjungierteren quaternionischen Integraloperators untersucht und die grundlegenden Eigenschaften ihrer zugehörigen Eigenwerte werden detailliert beschrieben. Wenn die Konzentrationsgebiete beider Räume kugelförmig sind, kann der Winkelanteil dieser Signale explizit gefunden werden, was zur Lösung von mehreren eindimensionalen radialen Integralgleichungen führt.
Wir nutzen die theoretischen Ergebnisse und harmonische Konjugierten um Klassen monogener Funktionen in verschiedenen Räumen zu konstruieren. Zur Charakterisierung der monogenen gewichteten Hardy- und Bergman-Räume in der Einheitskugel werden zwei konstruktive Algorithmen vorgeschlagen. Für eine reelle harmonische Funktion, die zu einem gewichteten Hardy- und Bergman-Raum gehört, werden die harmonischen Konjugiert in den gleichen Räumen gefunden. Die Beschränktheit der zugrundeliegenden harmonischen Konjugationsoperatoren wird in den angegebenen gewichteten Räumen bewiesen. Zusätzlich wird ein quaternionisches Gegenstück zum Satz von Bloch für monogene Funktionen bewiesen. / This work presents a novel Quaternionic Function Theory associated with the best approximation problem in the setting of Hilbert spaces concerning families of prolate and oblate spheroidal functions.
The general theory begins with the explicit construction of orthogonal bases for the spaces of harmonic, monogenic, and contragenic functions defined in spheroidal domains of arbitrary eccentricity, whose elements are parametrized by the shape of the corresponding spheroids. A detailed study regarding the elements that constitute these bases is carried out in this thesis. The notion of a contragenic function depends on the domain, and, therefore, it is not a local property in contrast to the concepts of harmonic and monogenic functions. Various conversion formulas that relate systems of harmonic, monogenic, and contragenic functions associated with spheroids of differing eccentricity are presented. Furthermore, the existence of standard nontrivial contragenic functions is shown for spheroids of any eccentricity.
The second significant contribution presented in this work pertains to a quaternionic space-frequency theory for band-limited quaternionic functions. A new class of quaternionic signals is proposed, whose energy concentration in the space and the frequency domains are maximal under the quaternion Fourier transform. These signals are studied in the context of spatial-frequency concentration as eigenfunctions of a compact and self-adjoint quaternion integral operator. The fundamental properties of their associated eigenvalues are described in detail. When the concentration domains are spherical in both spaces, the angular part of these signals can be found explicitly, leading to a set of one-dimensional radial integral equations.
The theoretical framework described in this work is applied to the construction of classes of monogenic functions in different spaces via harmonic conjugates. Two constructive algorithms are proposed to characterize the monogenic weighted Hardy and Bergman spaces in the Euclidean unit ball. For a real-valued harmonic function belonging to a Hardy and a weighted Bergman space, the harmonic conjugates in the same spaces are found. The boundedness of the underlying harmonic conjugation operators is proven in the given weighted spaces. Additionally, a quaternionic counterpart of Bloch’s Theorem is established for monogenic functions.
|
Page generated in 0.0805 seconds