• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Motion prediction and dynamic stability analysis of human walking : the effect of leg property

Boonpratatong, Amaraporn January 2013 (has links)
The objective of this thesis is to develop and validate a computational framework based on mathematical models for the motion prediction and dynamic stability quantification of human walking, which can differentiate the dynamic stability of human walking with different mechanical properties of the leg. Firstly, a large measurement database of human walking motion was created. It contains walking measurement data of 8 subjects on 3 self-selected walking speeds, which 10 trials were recorded at each walking speed. The motion of whole-body centre of mass and the leg were calculated from the kinetic-kinematic measurement data. The fundamentals of leg property have been presented, and the parameters of leg property were extracted from the measurement data of human walking where the effects of walking speed and condition of foot-ground contact were investigated. Three different leg property definitions comprising linear axial elastic leg property, nonlinear axial elastic leg property and linear axial-tangential elastic leg property were used to extracted leg property parameters. The concept of posture-dependent leg property has been proposed, and the leg property parameters were extracted from the measurement data of human walking motion where the effects of walking speed and condition of foot-ground contact were also investigated. The compliant leg model with axial elastic property (CAE) was used for the dynamic stability analysis of human walking with linear and nonlinear axial elastic leg property. The compliant leg model with axial and tangential elastic property (CATE) was used for that with linear axial-tangential elastic leg property. The posture - dependent elastic leg model (PDE) was used for that with posture-dependent leg property. It was found that, with linear axial elastic leg property, the global stability of human walking improves with the bigger touchdown contact angle. The average leg property obtained from the measurement data of all participants allows the maximum global stability of human walking. With nonlinear axial elastic leg property, the global stability decreases with the stronger nonlinearity of leg stiffness. The incorporation of the tangential elasticity improves the global stability and shifts the stable walking velocity close to that of human walking at self-selected low speed (1.1-1.25 m/s).By the PDE model, the human walking motions were better predicted than by the CATE model. The effective range of walking prediction was enlarged to 1.12 – 1.8 m/s. However, represented by PDE model, only 1-2 walking steps can be achieved. In addition, the profiles of mechanical energies represented by the PDE model are different from that of the orbital stable walking represented by CATE model. Finally, the minimal requirements of the human walking measurements and the flexibility of simple walking models with deliberate leg property definitions allow the computational framework to be applicable in the dynamic stability analysis of the walking motion with a wide variety of mechanical property of the leg.
2

Exploring the Use of Instrumented Insoles to Estimate Trunk Local Dynamic Stability During Treadmill Walking

Mir-Orefice, Alexandre 20 December 2023 (has links)
Gait assessments can help identify individuals at an elevated risk of falling. Gait variability and local dynamic stability (LDS) are considered the most valid measures to assess gait stability and predict gait-related falls. Specifically, LDS of the trunk is most often used to assess gait stability given its important contribution to the centre of mass and the ability to discriminate between fallers and non-fallers using its kinematics. Reliable wearable sensors can be implemented in real-world gait assessments to actively screen for fall risk. Instrumented insoles are an example of unobtrusive wearable technology that can perform accurate gait assessments in real-world settings; however, they have not been validated for gait stability assessments, and cannot directly measure trunk LDS. The purpose of this thesis was to develop a framework to estimate gait stability using instrumented insoles. Fifteen participants were recruited to walk on a treadmill for seven minutes at their preferred walking speed while wearing instrumented insoles and a full-body inertial measurement unit suit. The reliability of foot LDS calculated from instrumented insole data was evaluated against the inertial measurement unit suit using intraclass correlation coefficients. Trunk LDS, measured via the IMU suit, was then predicted by applying linear regressions to the insole-derived metrics. A simple linear regression was used to establish the base amount of variance in trunk LDS that could be explained by foot LDS. Subsequently, a multiple linear regression model consisting of the standard deviation of stride time, standard deviation of double support time, mean single support time, mean yaw variability, and median absolute deviation of yaw variability was used to estimate trunk LDS. Results show that instrumented insoles can reliably measure foot LDS (ICC₃,₁ = 0.860). Moreover, the multiple linear regression explained 47.7% more variance than the simple linear regression (adjusted R² of 0.845 versus 0.368). This thesis demonstrates that instrumented insoles are an appropriate measurement tool for foot stability and that they can be used to predict trunk LDS with good accuracy during gait.
3

Determinants And Strategies For The Alternate Foot Placement

Moraes, Renato January 2005 (has links)
Undesirable landing area (e. g. , a hole, a fragment of glass, a water puddle, etc) creates the necessity for an alternate foot placement planning and execution. Previous study has proposed that three determinants are used by the central nervous system (CNS) for planning an alternate foot placement: minimum foot displacement, stability and maintenance of forward progression. However, validation of these determinants is lacking. Therefore, the general purpose of the series of studies presented here is to validate and test the generality of the decision algorithm of alternate foot placement selection developed previously. The first study was designed to validate the use of a virtual planar obstacle paradigm and the economy assumption behind minimum foot displacement determinant. Participants performed two blocks of trials. In one block, they were instructed to avoid stepping in a virtual planar obstacle projected in the screen of a LCD monitor embedded in the ground. In another block, they were instructed to avoid stepping in a real hole present in walkway. Behavioral response was unaffected by the presence of a real hole. In addition, it was suggested that minimum foot displacement results in minimum changes in EMG activity which validates the economy determinant. The second study was proposed to validate the stability determinant. Participants performed an avoidance task under two conditions: free and forced. In the free condition participants freely chose where to land in order to avoid stepping in a virtual obstacle. In the forced condition, a green arrow was projected over the obstacle indicating the direction of the alternate foot placement. The data from the free condition was used to determine the preferred alternate foot placement whereas the data from the forced condition was used to assess whole body stability. It was found that long and lateral foot placements are preferred because they result in a more stable behavior. The third study was designed to validate the alternate foot placement model in a more complex terrain. Participants were required to avoid stepping in two virtual planar obstacles placed in sequence. It was found that participants used the strategy of planning the avoidance movement globally and additional determinants were used. One of the additional determinants was implementation feasibility. In the third study, gaze behavior was also monitored and two behaviors emerged from this data. One sub-group of participants fixated on the area stepped during adaptive step, whereas another sub-group anchor their gaze in a spot ahead of the area-to-be avoided and used peripheral vision for controlling foot landing. In summary, this thesis validates the three determinants for the alternate foot placement planning model and extends the previous model to more complex terrains.
4

Determinants And Strategies For The Alternate Foot Placement

Moraes, Renato January 2005 (has links)
Undesirable landing area (e. g. , a hole, a fragment of glass, a water puddle, etc) creates the necessity for an alternate foot placement planning and execution. Previous study has proposed that three determinants are used by the central nervous system (CNS) for planning an alternate foot placement: minimum foot displacement, stability and maintenance of forward progression. However, validation of these determinants is lacking. Therefore, the general purpose of the series of studies presented here is to validate and test the generality of the decision algorithm of alternate foot placement selection developed previously. The first study was designed to validate the use of a virtual planar obstacle paradigm and the economy assumption behind minimum foot displacement determinant. Participants performed two blocks of trials. In one block, they were instructed to avoid stepping in a virtual planar obstacle projected in the screen of a LCD monitor embedded in the ground. In another block, they were instructed to avoid stepping in a real hole present in walkway. Behavioral response was unaffected by the presence of a real hole. In addition, it was suggested that minimum foot displacement results in minimum changes in EMG activity which validates the economy determinant. The second study was proposed to validate the stability determinant. Participants performed an avoidance task under two conditions: free and forced. In the free condition participants freely chose where to land in order to avoid stepping in a virtual obstacle. In the forced condition, a green arrow was projected over the obstacle indicating the direction of the alternate foot placement. The data from the free condition was used to determine the preferred alternate foot placement whereas the data from the forced condition was used to assess whole body stability. It was found that long and lateral foot placements are preferred because they result in a more stable behavior. The third study was designed to validate the alternate foot placement model in a more complex terrain. Participants were required to avoid stepping in two virtual planar obstacles placed in sequence. It was found that participants used the strategy of planning the avoidance movement globally and additional determinants were used. One of the additional determinants was implementation feasibility. In the third study, gaze behavior was also monitored and two behaviors emerged from this data. One sub-group of participants fixated on the area stepped during adaptive step, whereas another sub-group anchor their gaze in a spot ahead of the area-to-be avoided and used peripheral vision for controlling foot landing. In summary, this thesis validates the three determinants for the alternate foot placement planning model and extends the previous model to more complex terrains.
5

Assessing the Effects of Exoskeleton Use on Balance and Postural Stability

Park, Jangho 30 September 2021 (has links)
There is emerging evidence for the potential of occupational back-support exoskeletons (BSEs) to reduce physical demands, and thereby help control/prevent the risk of overexertion injuries associated with manual material handling. However, it is important to understand whether BSEs also introduce any unintended safety challenges. One potential risk associated with BSE use is increased risk of falls, since their extra weight, rigid structure, and external hip extension torque may increase demands on the postural control system. However, there is currently limited evidence on whether, and to what extent, BSE use alters postural stability and/or fall risk. The primary goal of this work was to understand the effects of exoskeleton use, and quantify the effects of exoskeleton design parameters, on balance and postural stability, with a focus on passive BSEs used for repetitive lifting work. A comprehensive evaluation of BSE use was performed under controlled laboratory conditions, focusing on three classes of human activity that form the basis of maintaining postural balance in diverse real-life scenarios: maintenance of a specified posture, voluntary movement, and reaction to an external perturbation. The first study demonstrated that during quiet bipedal stance, BSE use increased median frequency and velocity of the center of pressure in the anterior-posterior direction. In the second study on level walking, BSE use caused an increase in gait step width and gait variability, and decrease in the margin of stability. BSE use with high supportive torque led to adapted gait patterns in early-stance phase. Hip range of motion and peak hip flexion velocity also decreased, and participants exhibited different strategies to increase mechanical energy for propelling the leg in late-stance phase: these effects increased with increasing torque applied by the exoskeleton. In the final study, BSE use did not alter the maximal lean angle from which individuals could successfully execute single step balance recovery, following a forward loss of balance. However, several recovery responses were negatively affected by BSE use, including increased reaction time, impeded hip flexion, and reduced margin of stability in the high-torque condition. This is the first systematical investigation to quantify the effects of passive BSEs with multiple supportive torque levels on balance and postural stability. While exoskeleton effects on static balance were minimal, more substantial changes in gait spatiotemporal parameters, hip joint kinematics, and dynamic margins of stability were observed in the later studies. Our results indicate that postural stability deteriorated with exoskeleton use in dynamic conditions, and provide mechanistic insight into how stability is altered by different exoskeleton design factors such as added mass, restricted range of motion, and external hip extension torque. While our results are suggestive of increased fall risk, especially in the high-torque condition, fall risk in real life is moderated by a complex combination of individual and environmental conditions. Future work should consider more complex, realistic tasks and also include a more diverse sample that is studied under longer exposure durations, to further elucidate these findings. Our characterizations of a wide variety of postural responses as a function of exoskeleton torque settings are expected to contribute to improving both design and practice guidelines to facilitate the safe adoption of BSEs in the workplace. / Doctor of Philosophy / Occupational back-support exoskeletons (BSEs) – wearable mechanical systems designed to support, augment, and/or assist back extension – are expected to serve as an alternative workplace intervention to control and prevent overexertion injuries related to manual material handling tasks. While recent studies have shown the beneficial effects of BSE use in terms of physical load reduction on the low back, some concerns have also been raised on unexpected or unintended effects of exoskeletons. One potential risk associated with exoskeleton use is increased risk of falls, since a BSE's extra weight, rigid structure, and external hip extension torque are expected to place increased demands on the postural control system. Increase in fall risk is a critical safety concern, as occupational falls are a serious problem in terms of injuries, medical/industrial cost, and lost work time. However, there exists limited evidence on whether the use of a BSE alters postural stability and/or increases fall risk. Hence, the goal of our study was to quantify the effects of BSE use on postural stability in various conditions related to real-life scenarios, such as standing balance, walking stability and how one would respond to a loss of balance following an external perturbation. Our results showed that during quiet standing, BSE use slightly increased postural sway. In level walking tasks, BSE use had adverse effects on step length, step width, and dynamic stability. Furthermore, wearing a BSE with high supportive torque led to adapted gait patterns in early-stance phase, whereas participants showed different strategies to increase mechanical energy for propelling the leg in late-stance phase. In the final study investigating single step balance recovery following a forward loss of balance, we found that BSE use negatively affects balance recovery, mainly by impeding hip flexion. Thus, our work suggests that exoskeleton use can deteriorate balance and/or postural stability in situations of static standing, voluntary walking, and reacting to an external perturbation, thereby potentially leading to an increase in fall risk. These effects may be more pronounced among specific population sub-groups such as older workers, and may also affect individuals more severely under conditions of stress or fatigue. Hence, future studies must include more rigorous testing of BSE use using a variety of challenging and realistic scenarios, and also include more diverse population samples. The findings from this work are expected to contribute to improving design and practice guidelines to facilitate the safe adoption of BSEs in the workplace.
6

Functional competency of lower limb musculature in the elderly

Singh, Navrag B 01 July 2013 (has links)
Körperlich aktiv zu sein ist Grundlage unseres täglichen Lebens. Für alle diese Aktivitäten ist das kontinuierliche Zusammenspiel des senso-motorischen System (SMS) erforderlich. Die Kontrolle der verschiedenen afferenten und efferenten Subsysteme innerhalb des SMS basiert auf Feedback-Mechanismen, die die Aufrechterhaltung des Gleichgewichts und der Stabilität während den verschiedensten statischen als auch dynamischen Aktivitäten ermöglichen. Trotz dieser Kontroll- und Stabilisierungssystems ist das kinematische und kinetische Resultat nicht konstant; stattdessen ist bei globalen „Ganzkörper-Bewegungen“, und lokaler Muskelanspannung ständig eine gewisse Variabilität vorhanden. Die Interpretation dieser Variabilität bei Bewegungshandlungen ist kontrovers. Wobei große Variabilität ist nicht zwangsläufig ein Indikator für Defizite des SMS darstellt. Das Ziel dieser Dissertation war, die Variabilität bei lokalen und globalen Bewegungshandlungen in statischen und dynamischen Ausgangstellungen zu quantifizieren. Darüberhinaus, wurde der Zusammenhang zwischen lokaler Variabilität der Muskelkraftproduktion und der Variabilität bei globalen Bewegungshandlungen. Die Ergebnisse zeigen, dass lokale und globale Variabilität von Bewegungshandlungen in Menge und Muster verändert sind, nach Störung des SMS durch: Ermüdung, Veränderungen der Umfeldbedingungen, Alterung und bei Personen mit Sturzerfahrung. Außerdem wurde gezeigt, dass sowohl zu große als auch zu kleine Variabilität, ein entscheidendes funktionelles Defizit bei älteren Personen darstellt. Dieser Dissertation hebt die Bedeutung der Variabilität während wiederholter Bewegungshandlungen hervor, welche einen funktionellen Biomarker für die Beurteilung von Bewegungsstörungen darstellt. In der klinische Praxis könnte dieser helfen bei der frühen Identifikation von Personen mit Bewegungsstörungen, zur Entwicklung von individual-spezifischen Rehabilitationsmaßnahmen, sowie der Beurteilung verschiedener Therapieansätze. / Undertaking activities is fundamental throughout daily living. In order to successfully perform these activities, continuous involvement of the human sensori-motor system (HSMS) is required. The HSMS involves feedback mechanisms to control numerous afferent and the efferent subsystems to ensure maintenance of balance and stability during both static and dynamic activities. Despite such control and stabilizing mechanisms, the kinematic and kinetic output of a task is not constant; instead variability occurs during continuous performance of both global tasks such as standing and walking, as well as local force production. The interpretation of variability during output task performance remains controversial, with larger levels of variability not always indicating deficits in human-motor performance. The aim of this dissertation was to assess variability during local as well as global task performance in static and dynamic settings. Furthermore, the association between the level of variability during local force production and variability during global tasks such as standing and walking was also investigated. The results within this dissertation showed that variability during task performance is modified in magnitude as well as in structure after perturbation due to fatigue, changes in environmental conditions, and aging, as well as in fall-prone elderly individuals. Furthermore, both high as well as low levels of variation constitute a key functional deficit among elderly individuals. This dissertation highlights the importance of considering trial-to-trial variations during continuous task performance as a key functional biomarker for motor-related pathologies. Effective assessment of such measures of variability in clinical settings could effectively complement current clinical practice for both early and effective identification of individuals with motor-related pathology, designing subject-specific rehabilitation programs, and evaluating therapy efficacy.
7

A multi-dimensional approach for early identification of increased risk of falling in early-onset Parkinson`s disease patients

Catalá, Maria Moreno 24 October 2016 (has links)
Gleichgewichtsstörungen und Stürze gehören zu den wichtigsten Symptomen der Parkinson Krankheit (PD). Bei jungen PD-Patienten werden diese Probleme durch Nebenwirkungen der Medikation zusätzlich verstärkt. Aufgrund des noch sehr limitierten Verständnisses der zugrunde liegenden Mechanismen, die zum erhöhten Sturzrisiko bei jungen PD-Patienten beitragen, mangelt es derzeit an alternativen und effektiven bewegungsbasierten Therapien, um diese Sturzgefahr zu verringern. Diese Arbeit zielt darauf ab, solche Mechanismen zu identifizieren und eine effektive Methode zur Früherkennung des Sturzrisikos bei jungen PD-Patienten zu entwickeln. Es wurde der Beitrag der zentralen und peripheren neuromuskulären sowie sensomotorischen Fähigkeiten, dynamischen Stabilitätskontrolle und Anpassungsfähigkeit der Fortbewegung auf die Sturzrate junger PD-Patienten mittels eines Vergleichs zwischen gesunden Probanden und jungen PD-Patienten mit und ohne Sturzerfahrung (Fallers vs. Non-Fallers) untersucht. Der Vergleich zeigte, dass die PD-Fallers zentral begründete Defizite in der Muskelkraft ihrer Beinstrecker aufwiesen sowie eine verringerte Abfangleistung nach simulierten Vorwärtsstürzen. Die Parameter „Muskelkraft“ und „Annäherung an die vordere Stabilitätsgrenze“ identifizieren gemeinsam 90% der Fälle junger PD-Faller. PD-Patienten zeigten auch eine uneingeschränkte prädiktive Anpassungsfähigkeit auf Gangstörungen, aber ein weniger stabiles Gangmuster und weniger effektive reaktive Antworten auf wiederholte Gangstörungen im Vergleich zu Kontrollpersonen. Diese Arbeit stellt relevante Informationen dar, die für die Entwicklung von alternativen nicht-medikamentösen Therapien zur Reduzierung des Sturzrisikos bei jungen PD-Patienten nützlich sind. Darüber hinaus wurde eine akkurate Methode zur Früherkennung von jungen PD-Patienten mit einem erhöhen Sturzrisiko erarbeitet. Diese Patienten könnten von Training der Beinstrecker und der dynamischen Stabilität profitieren. / Postural instability and falls are some of the main symptoms associated with the Parkinson`s disease (PD). In early-onset patients (diagnosed before the age of 51) these problems are worsened by medication-related side-effects. There is a lack of effective exercise-based training interventions to reduce the risk of falling due to our limited understanding of the underlying mechanisms contributing to falls in early-onset PD. The present thesis aims to identify those mechanisms responsible for falls and to develop a sensitive method of assessment for the early discrimination of patients at risk of falling in early-onset PD. We investigated the contribution of central and peripheral neuromuscular and sensory-motor capacities, dynamic stability control and locomotor adaptability to the increased risk of falling in young PD patients by means of comparing healthy controls and early-onset PD fallers and non-fallers. The comparison revealed that PD fallers have central originated deficits in leg extensors` muscle strength - evidenced by increased antagonistic moments and activation deficit of the agonists - and a reduced increase of the base of support in response to simulated forward falls, both resulting in decreased recovery performance. The factors “muscle strength” and “approach to the anterior limit of stability” together could correctly classify 90% of the PD fallers. In addition, while young PD patients showed unaltered predictive adaptability to gait perturbations, they exhibited less stable gait patterns and less effective reactive responses to repeated gait perturbations compared to controls. This thesis provides relevant information for the development of alternative non-medication based therapies aiming to reduce falls in early-onset PD and an accurate assessment tool for the early identification of young patients at a high risk of falling. These patients may benefit from leg-extensors'' strengthening and dynamic stability training.

Page generated in 0.0698 seconds