• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 771
  • 181
  • 61
  • 37
  • 16
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1319
  • 316
  • 301
  • 277
  • 269
  • 205
  • 204
  • 199
  • 182
  • 158
  • 146
  • 145
  • 142
  • 141
  • 139
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Influence of the environment on galaxy formation / Influence de l'environnement sur la formation des galaxies

Niemiec, Anna 26 September 2017 (has links)
Dans le modèle de formation hiérarchique des structures, les amas de galaxies se forment et grandissent par l'accrétion de groupes plus petits ou de galaxies isolées. Dans ce scenario, comprendre comment les galaxies accrétées interagissent avec cet environnement très dense est une étape importante pour comprendre le schéma global de l'évolution des galaxies et de la formation des structures. En effet, pendant leur chute au coeur de l'amas, les galaxies sont sujettes à diverses interactions avec l'amas hôte, au niveau de leur composante baryonique aussi bien que matière noire, et ces interactions vont modifier les propriétés de la galaxie. Au niveau de la matière noire, les simulations numériques suggèrent que la friction dynamique fait plonger les galaxies vers le centre de l'amas, et que les forces de marée exercées par l'hôte peuvent arracher une partie de la matière de la galaxie, et même détruire celle-ci. Ce processus, au cours duquel une partie de la matière noire de la galaxie est arrachée, est appelé stripping. La détection du stripping de matière noire contient d'importantes informations sur l'évolution des groupes et des amas. Le travail principal de cette thèse se concentre sur l'étude des galaxies dans les amas, et en particulier sur l'étude du stripping des galaxies par les forces de marées des amas. Les profils de densité des halos sont mesurés à l’aide de l’effet de lentille gravitationnelle faible, en utilisant les catalogues de formes de galaxies des relevés CFHTLenS, CFHT Stripe 82 et DES-SV, alliés au catalogue d’amas redMaPPer. / Galaxy clusters are large structures in the Universe, composed of tens or hundreds of galaxies bound by gravity. In the hierarchical formation model, they are formed and grow by accretion of smaller groups or isolated galaxies. In this scenario, understanding how these accreted galaxies interact with the very dense cluster environnement is an important step towards explaining the global picture of galaxy evolution and structure formation. Indeed, during infall, galaxies are subject to numerous interactions with the host cluster, both at the level of the baryonic and dark matter component, and these interactions influence the properties of the infalling galaxy. At the level of dark matter, numerical simulations suggest that dynamical friction sinks galaxies towards the center of clusters, and tidal forces of the host can strip part of the satellite's matter away, and even disrupt it. The detection of this stripping contains important informations on the evolution of groups and clusters: what quantity of dark matter is associated to the cluster galaxies as a function of the distance to the centre of the cluster ? How does this depend on the redshift and dynamical state of the cluster ? Does stripping depend on the morphological type of cluster galaxies ? The main work of this thesis is focused on studying galaxies in clusters, in particular tidal stripping of their dark matter haloes. The dark matter halo profiles are measured with weak gravitational lensing, using galaxy shape catalogues from the CFHTLenS, CFHT Stripe 82 and DES-SV surveys, combined with the redMaPPer cluster catalogue.
182

Propriedades globais de superaglomerados de galáxias / Global Properties of Superclusters of galaxies

Marcus Vinicius Costa Duarte 26 February 2010 (has links)
Estudamos neste trabalho as propriedades globais dos superaglomerados de galáxias com uma amostra de galáxias observadas espectroscopicamente pelo Sloan Digital Sky Survey (SDSS). Nossa amostra limitada em volume possui 121.002 galáxias com $M_r<-21$ dentro do intervalo de redshift $0,02<z<0,155$. Identificamos os superaglomerados utilizando os métodos de campo de densidades e \\textit{friends-of-friends}. Escolhemos um parãmetro de suavização $\\sigma=8h^{-1}Mpc$ e amostramos o campo de densidades numa grade de largura $l_{cel}=4h^{-1}Mpc$. Com o intuito de avaliar o efeito do limiar de densidade na identificação dos superaglomerados, escolhemos dois valores: um correspondente ao número máximo de estruturas em grande escala e um com o maior superaglomerado com dimensão de aproximadamente $120h^{-1}Mpc$. Para cada valor obtivemos a riqueza e a luminosidade total dos objetos. Para uma análise morfológica, os Funcionais de Minkowski foram calculados e os superaglomerados foram classificados como filamentos, fitas e panquecas. Analisando possíveis correlações entre as características dos superaglomerados, encontramos que filamentos tendem a ser mais ricos e consequentemente mais luminosos e com uma maior dispersão de velocidades. Usando a distribuição cumulativa de luminosidade de superaglomerados, encontramos que as distribuições de filamentos e fitas são distintas entre si. Num apêndice apresentamos um estudo das populações estelares de galáxias em superaglomerados. Calculamos a densidade local para cada galáxia e estudamos um análogo da relação morfologia-densidade através da relação entre densidade local e os parâmetros espectrais. Nenhuma diferença significativa foi notada entre filamentos, fitas e panquecas. Em outras palavras, comportamentos similares foram identificados para todos os parâmetros espectrais e morfologias dos superaglomerados, em todos os limiares. Resultado semelhante foi obtido para a distribuição cumulativa dos parâmetros espectrais. Finalmente, estudamos a influência dos aglomerados no ambiente interno dos superaglomerados. Valores médios dos parâmetros espectrais foram calculados dentro de esferas centradas nas BCGs (\\textit{Brightest Cluster Galaxies}) e verificamos todos os perfis dos parâmetros espectrais apresentam tendências a populações mais jovens à medida que a distância da BCG aumenta. O perfil mediano apresentou valores assintóticos para distâncias maiores que aproximadamente $8h^{-1}Mpc$. Esse valor é da mesma ordem que o parâmetro de suavização o que usamos, o que pode explicar porque não encontramos relações entre a morfologia dos superaglomerados e os valores médios dos parâmetros espectrais das populações estelares das galáxias que os constituem. / We have studied the global properties of galaxy superclusters with a sample of galaxies observed spectroscopically by the Sloan Digital Sky Survey (SDSS). Our volume limited sample has 121,002 galaxies with $M_r<-21$ and the in redshift range $0.02<z<0.155$. We have identified superclusters using the density field and friends-of-friends methods. We have adopted a smoothing parameter $\\sigma=8h^{-1}Mpc$ and sampled the density field in a grid of size $l_{cel}=4h^{-1}Mpc$. In order to evaluate the effect of the threshold density value on supercluster identification, we have choosen two values: the threshold which corresponds to the highest number of superclusters and the threshold where the largest supercluster is about $120h^{-1}Mpc$ long. For each value, we have obtained the richness and the total luminosity of the objects. For the morphological analisys the Minkowski Functionals were calculated and the superclusters were classified as filaments, ribbons and pancakes. Analyzing possible correlations among superclusters features, we have found that filaments tend to be richer and consequently more luminous and have a higher velocity dispersion. Using the cumulative distribution of supercluster luminosities, we have found that the distributions of filaments-like and pancakes-like objects are probably distinct. In an appendix we present a study of stellar populations of galaxies. We have calculated the local density for each galaxy, obtaining an analogous of the morphology-density relation through the relation between local density and spectral parameters. No significative difference in this relation has been noticed among filaments, ribbons and pancakes. In other words, similar behaviors have been identified for all spectral parameters and superclusters morphologies, in all threshold densities. A similar result was obtained for the cumulative distributions of spectral parameters. Finally, we have studied the influence of clusters on the inner environment of superclusters. Average values of spectral parameters were calculated inside spheres centered at each BCG(\\textit{Brightest Cluster Galaxy}) and all spectral parameter profiles have shown trends towards younger populations as the distance from BCG increases. The median profile presented asymptotic values for distances greater than roughly $8h^{-1}Mpc$. Since this is of the same order of magnitude of the smoothing parameter, this might explain why we did not find any relation between the supercluster morphology and the mean value of spectral parameters of the galaxies.
183

Composite Spectral Energy Distributions and Infrared–Optical Colors of Type 1 and Type 2 Quasars

Hickox, Ryan C., Myers, Adam D., Greene, Jenny E., Hainline, Kevin N., Zakamska, Nadia L., DiPompeo, Michael A. 30 October 2017 (has links)
We present observed mid-infrared and optical colors and composite spectral energy distributions (SEDs) of type 1 (broad-line) and 2 (narrow-line) quasars selected from Sloan Digital Sky Survey (SDSS) spectroscopy. A significant fraction of powerful quasars are obscured by dust and are difficult to detect in optical photometric or spectroscopic surveys. However, these may be more easily identified on the basis of mid-infrared (MIR) colors and SEDs. Using samples of SDSS type 1 and 2 matched in redshift and [O III] luminosity, we produce composite rest-frame 0.2-15 mu m SEDs based on SDSS, UKIDSS, and Wide-field Infrared Survey Explorer photometry and perform model fits using simple galaxy and quasar SED templates. The SEDs of type 1 and 2 quasars are remarkably similar, with the differences explained primarily by the extinction of the quasar component in the type 2 systems. For both types of quasar, the flux of the active galactic nucleus (AGN) relative to the host galaxy increases with AGN luminosity (L-[O III]) and redder observed MIR color, but we find only weak dependencies of the composite SEDs on mechanical jet power as determined through radio luminosity. We conclude that luminous quasars can be effectively selected using simple MIR color criteria similar to those identified previously (W1-W2 > 0.7; Vega), although these criteria miss many heavily obscured objects. Obscured quasars can be further identified based on optical-IR colors (for example, (u-W3[AB])> 1.4(W1-W2[Vega])+ 3.2). These results illustrate the power of large statistical studies of obscured quasars selected on the basis of MIR and optical photometry.
184

A Dependence of the Tidal Disruption Event Rate on Global Stellar Surface Mass Density and Stellar Velocity Dispersion

Graur, Or, French, K. Decker, Zahid, H. Jabran, Guillochon, James, Mandel, Kaisey S., Auchettl, Katie, Zabludoff, Ann I. 22 January 2018 (has links)
The rate of tidal disruption events (TDEs), R-TDE, is predicted to depend on stellar conditions near the super-massive black hole (SMBH), which are on difficult-to-measure sub-parsec scales. We test whether R-TDE depends on kpc-scale global galaxy properties, which are observable. We concentrate on stellar surface mass density, Sigma M-*, and velocity dispersion, sigma(nu), which correlate with the stellar density and velocity dispersion of the stars around the SMBH. We consider 35 TDE candidates, with and without known X-ray emission. The hosts range from star-forming to quiescent to quiescent with strong Balmer absorption lines. The last (often with post-starburst spectra) are overrepresented in our sample by a factor of 35(-17)(+21) or 18(-7)(+8), depending on the strength of the H delta absorption line. For a subsample of hosts with homogeneous measurements, Sigma M-* = 10(9)-10(10) M-circle dot/kpc(2), higher on average than for a volume-weighted control sample of Sloan Digital Sky Survey galaxies with similar redshifts and stellar masses. This is because (1) most of the TDE hosts here are quiescent galaxies, which tend to have higher Sigma M-* than the star-forming galaxies that dominate the control, and (2) the star-forming hosts have higher average Sigma M-* than the star-forming control. There is also a weak suggestion that TDE hosts have lower sigma(nu) than for the quiescent control. Assuming that R-TDE infinity Sigma M-*(alpha) x sigma(beta)(nu), and applying a statistical model to the TDE hosts and control sample, we estimate (alpha) over cap = 0.9 +/- 0.2 and (beta) over cap = -1.0 +/- 0.6. This is broadly consistent with RTDE being tied to the dynamical relaxation of stars surrounding the SMBH.
185

High redshift star-forming galaxies in absorption and emission

Quider, Anna Marie January 2011 (has links)
Galaxies in the redshift range 1 < z < 3 existed during the most vigorous period of star formation in the history of the Universe. In the past 15 years, large rest-frame UV spectroscopic samples of z ~ 3 star-forming galaxies have been assembled. However, this particular redshift range, the so-called Redshift Desert, has only begun to be characterized. Most studies involve low resolution, low signal-to-noise spectra because the small angular size (δ ≤ 1") and faintness (RAB = 24 - 25.5) of high redshift galaxies limit what can be accomplished with a reasonable investment of observing time, even using the world's largest optical telescopes. One way to circumvent these two issues is to study gravitationally lensed galaxies. The magnification boost (up to a factor of 30x) and morphological distortion of a high redshift galaxy by an intervening mass concentration allow for the study of the high redshift Universe in unprecedented detail. I present a detailed analysis of the rest-UV spectrum of two gravitationally lensed galaxies: the 'Cosmic Horseshoe' (zsys = 2.38115) and the 'Cosmic Eye' (zsys = 3.07331). The characterization of the stellar populations and the interstellar gas geometry, kinematics, and composition which I achieve is a preview of the type of information that will be available for unlensed high redshift galaxies with the next generation of optical telescopes. I probe the lower redshift end of the Redshift Desert with a study of Fe ii and Mg ii features in the rest-frame near-UV spectrum of 96 star-forming galaxies in the redshift range 1 < z < 2. Stacked spectra are used to explore average outflow and line profile trends with stellar mass and reddening. I also investigate the phenomenon of emission filling of absorption lines which has implications for the line strength and velocity offset of interstellar absorption lines. Individual galaxies are used to assess the range of outflow velocities as well as the prevalence of emission filling in galaxies from this epoch. This is the first large scale study of fine-structure emission from Feii in high redshift galaxies, both in stacked and individual galaxy spectra. An alternative to investigating galaxies by collecting their light is to study them as seen in absorption against a cosmic backlight, such as a quasar. The Sloan Digital Sky Survey, an imaging and spectroscopic survey which covers about one-quarter of the night sky, has collected many thousands of quasar spectra. I search ~ 44,600 of these spectra, up through Data Release 4, for Mg ii λλ2796,2803 absorption doublets. The final catalog includes ~ 16700 Mgii absorption line systems in the redshift range 0.36 ≤ z ≤ 2.28. Measurements of the absorption redshift and rest equivalent widths of the Mg ii doublet as well as select metal lines are available in the catalog. This is the largest publicly available catalog of its kind and its combination of large size and well understood statistics make it ideal for precision studies of the low-ionization and neutral gas regions of galaxies. I conclude this thesis by suggesting several avenues for extending the studies of high redshift star-forming galaxies presented herein.
186

Classification morphologique d'un échantillon optique d'amas de galaxies / Morphological classification of an optical sample of clusters of galaxies

Rostagni, Florent 25 September 2014 (has links)
Les amas de galaxies sont l'une des sondes cosmologiques permettant de contraindre les modèles d'univers, via leur fonction de masse et leur vitesse de croissance, elles-mêmes mesurées par l'état dynamique des amas. Les grands relevés présents et futurs permettent d'avoir accès à une information plus nombreuse et plus complète sur les amas de galaxies et donc d'utiliser de nouvelles méthodes de détermination de leur état dynamique. Dans cette thèse, une nouvelle méthode de caractérisation morphologique 2+1D des amas a été développée afin d'établir une nouvelle classification des amas. Il s'agit d'une méthode optique basée sur la position et la vitesse radiale des galaxies. Les structures dans la zone d'influence des amas sont détectées et caractérisées en projection et dans l'espace des vitesses radiales à l'aide d'une analyse en ondelettes. À partir du nombre de structures, les amas sont classés en amas unimodal, bimodal ou multimodal. L'ellipticité de leur distribution projetée et la gaussianité de la distribution des vitesses radiales sont également utilisées pour raffiner la classification. La méthode de caractérisation et de classification morphologique a été appliquée à un sous-échantillon de 403 amas issus du catalogue C4 en utilisant les données du SDSS. Il en est ressorti que 25% des amas sont unimodaux, 33% sont bimodaux et 42% sont multimodaux. Une analyse de la stabilité de la classification a également été réalisée ainsi qu'une comparaison avec les résultats de la littérature, que ce soit d'un point de vue statistique ou au niveau des amas individuels. / Clusters of galaxies are one of the main cosmological probes used to constrain the cosmological parameters, through their mass function and their growth rate. The measure of these two quantities require the determination of the dynamical state of clusters. The present and future large and deep sky surveys give access to a more complete information on clusters and legitimate the development of new methods of determination of their dynamical state. In this thesis, a new method of characterization of the cluster morphology has been developed. It is a 2+1D method using galaxies and it enables to develop a new morphological classification of clusters. Structures around clusters are detected and characterized in projection and along the line of sight using a wavelet analysis. The new classification consists in counting the number of structures in the vicinity of clusters, three clusters classes were defined : unimodal, bimodal and multimodal. The ellipticity and the Gaussianity of the distribution of radial velocities are also used to refine the classification. The method was applied to a subsample of 403 clusters from the C4cluster catalogue using data from the SDSS. The results are : 25% of the clusters are unimodals, 33% are bimodals and 42% are multimodals. The stability of the classification with respect to the different parameters used was also performed as well as a comparison with the results from other studies in the literature.
187

A SURVEY OF LUMINOUS HIGH-REDSHIFT QUASARS WITH SDSS AND WISE . II. THE BRIGHT END OF THE QUASAR LUMINOSITY FUNCTION AT z ∼ 5

Yang, Jinyi, Wang, Feige, Wu, Xue-Bing, Fan, Xiaohui, McGreer, Ian D., Bian, Fuyan, Yi, Weimin, Yang, Qian, Ai, Yanli, Dong, Xiaoyi, Zuo, Wenwen, Green, Richard, Jiang, Linhua, Wang, Shu, Wang, Ran, Yue, Minghao 20 September 2016 (has links)
This is the second paper in a series on a new luminous z similar to 5 quasar survey using optical and near-infrared colors. Here we present a new determination of the bright end of the quasar luminosity function (QLF) at z similar to 5. Combining. our 45 new quasars with previously known quasars that satisfy our selections, we construct the largest uniform luminous z similar to 5 quasar sample to date, with 99 quasars in the range of 4.7 <= z < 5.4 and -29 < M-1450 <= -26.8, within the Sloan Digital Sky Survey (SDSS) footprint. We use a modified 1/V-a method including flux limit correction to derive a binned QLF, and we model the parametric QLF using maximum likelihood estimation. With the faint-end slope of the QLF fixed as alpha = -2.03 from previous deeper samples, the best fit of our QLF gives a flatter bright end slope beta = -3.58 +/- 0.24 and a fainter break magnitude M-1450(*) = -26.98 +/- 0.23 than previous studies at similar redshift. Combined with previous work at lower and higher redshifts, our result is consistent with a luminosity evolution and density evolution model. Using the best-fit QLF, the contribution of quasars to the ionizing background at z similar to 5 is found to be 18%-45% with a clumping factor C of 2-5. Our sample suggests an evolution of radio loud fraction with optical luminosity but no obvious evolution with redshift.
188

A COMPARATIVE STUDY of KNOTS of STAR FORMATION in INTERACTING VERSUS SPIRAL GALAXIES

Smith, Beverly J., Zaragoza-Cardiel, Javier, Struck, Curtis, Olmsted, Susan, Jones, Keith 01 March 2016 (has links)
Interacting galaxies are known to have higher global rates of star formation on average than normal galaxies, relative to their stellar masses. Using UV and IR photometry combined with new and published Hα images, we have compared the star formation rates (SFRs) of ∼700 star forming complexes in 46 nearby interacting galaxy pairs with those of regions in 39 normal spiral galaxies. The interacting galaxies have proportionally more regions with high SFRs than the spirals. The most extreme regions in the interacting systems lie at the intersections of spiral/tidal structures, where gas is expected to pile up and trigger star formation. Published Hubble Space Telescope images show unusually large and luminous star clusters in the highest luminosity regions. The SFRs of the clumps correlate with measures of the dust attenuation, consistent with the idea that regions with more interstellar gas have more star formation. For the clumps with the highest SFRs, the apparent dust attenuation is consistent with the Calzetti starburst dust attenuation law. This suggests that the high luminosity regions are dominated by a central group of young stars surrounded by a shell of clumpy interstellar gas. In contrast, the lower luminosity clumps are bright in the UV relative to Hα, suggesting either a high differential attenuation between the ionized gas and the stars, or a post-starburst population bright in the UV but faded in Hα. The fraction of the global light of the galaxies in the clumps is higher on average for the interacting galaxies than for the spirals. Thus either star formation in interacting galaxies is "clumpier" on average, or the star forming regions in interacting galaxies are more luminous, dustier, or younger on average.
189

Clumps and Clusters in Ring Galaxies

Dennis, Taylor, Smith, Beverly J 05 April 2018 (has links)
For a sample of collisional ring galaxies, archival Hubble Space Telescope images were used to compare individual star clusters and kpc-sized clumps of star formation to each other in a variety of ways. For each galaxy, instrument, and filter, the magnitude of the brightest cluster in a clump was compared to the magnitude of the entire clump, and the fraction of the flux of the clusters in a clump over the flux of the entire clump was calculated and compared to star formation rates. In addition, a cluster luminosity function for each galaxy was derived. Comparing the brightest cluster in a clump to the magnitude of the entire clump and the flux ratio to the star formation rate did not show any significant patterns. However, the α found for the galaxies tended to be much flatter than what had been found in previous research. The α found seemed to be affected by the size of the bin used in the luminosity function. Using this information, α could be calculated for other incredibly luminous galaxies to see if the trend of flatter α continues.
190

Evidence For Increased Star Formation in Barred Galaxy Centres

Laing, Jennifer M January 2023 (has links)
Galactic bars play an important role in the dynamical evolution of their host galaxy, but their own evolution and impact on the local gas reservoir and star formation rate are still open questions. Recent work by the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) collaboration found higher molecular gas surface densities and velocity dispersions in barred galaxies compared to unbarred galaxies. The higher turbulence found in bars is expected to create the observed increases. In this work, I explore bar turbulence in molecular gas using published high resolution measurements of CO(2-1) from the PHANGS-ALMA survey. I compare properties of the molecular gas, such as surface density, velocity dispersion and star formation rate, in the centres of barred and unbarred galaxies. I consider the effect of galaxy environment on these properties from a local perspective (at cloud scales, ~100 pc) for galaxies with and without an AGN. On global scales, I consider these properties in the context of the environment in which a galaxy lives, whether in a cluster or in the field. All three quantities (gas surface density, velocity dispersion, and star formation rate) are found to be enhanced in barred galaxy centres, even without an AGN and regardless of global environment. / Thesis / Master of Science (MSc)

Page generated in 0.0726 seconds