221 |
A stellar overdensity associated with the Small Magellanic CloudPieres, A., Santiago, B. X., Drlica-Wagner, A., Bechtol, K., Marel, R. P. van der, Besla, G., Martin, N. F., Belokurov, V., Gallart, C., Martinez-Delgado, D., Marshall, J., Nöel, N. E. D., Majewski, S. R., Cioni, M.-R. L., Li, T. S., Hartley, W., Luque, E., Conn, B. C., Walker, A. R., Balbinot, E., Stringfellow, G. S., Olsen, K. A. G., Nidever, D., da Costa, L. N., Ogando, R., Maia, M., Neto, A. Fausti, Abbott, T. M. C., Abdalla, F. B., Allam, S., Annis, J., Benoit-Lévy, A., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Cunha, C. E., D'Andrea, C. B., Desai, S., Diehl, H. T., Doel, P., Flaugher, B., Fosalba, P., García-Bellido, J., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Honscheid, K., James, D., Kuehn, K., Kuropatkin, N., Menanteau, F., Miquel, R., Plazas, A. A., Romer, A. K., Sako, M., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Tucker, D. L., Wester, W. 06 1900 (has links)
We report the discovery of a stellar overdensity 8 degrees north of the centre of the Small Magellanic Cloud (SMC; Small Magellanic Cloud Northern Over-Density; SMCNOD), using data from the first 2 yr of the Dark Energy Survey (DES) and the first year of the MAGellanic SatelLITEs Survey (MagLiteS). The SMCNOD is indistinguishable in age, metallicity and distance from the nearby SMC stars, being primarily composed of intermediate-age stars (6 Gyr, Z=0.001), with a small fraction of young stars (1 Gyr, Z=0.01). The SMCNOD has an elongated shape with an ellipticity of 0.6 and a size of similar to 6 degrees x 2 degrees. It has an absolute magnitude of M-V congruent to -7.7, r(h) = 2.1 kpc, and mu v(r < r(h)) = 31.2 mag arcsec(-2). We estimate a stellar mass of similar to 10(5) M-circle dot, following a Kroupa mass function. The SMCNOD was probably removed from the SMC disc by tidal stripping, since it is located near the head of the Magellanic Stream, and the literature indicates likely recent Large Magellanic Cloud-SMC encounters. This scenario is supported by the lack of significant H-1 gas. Other potential scenarios for the SMCNOD origin are a transient overdensity within the SMC tidal radius or a primordial SMC satellite in advanced stage of disruption.
|
222 |
CLASH-VLT: DISSECTING THE FRONTIER FIELDS GALAXY CLUSTER MACS J0416.1-2403 WITH ∼800 SPECTRA OF MEMBER GALAXIESBalestra, I., Mercurio, A., Sartoris, B., Girardi, M., Grillo, C., Nonino, M., Rosati, P., Biviano, A., Ettori, S., Forman, W., Jones, C., Koekemoer, A., Medezinski, E., Merten, J., Ogrean, G. A., Tozzi, P., Umetsu, K., Vanzella, E., Weeren, R. J. van, Zitrin, A., Annunziatella, M., Caminha, G. B., Broadhurst, T., Coe, D., Donahue, M., Fritz, A., Frye, B., Kelson, D., Lombardi, M., Maier, C., Meneghetti, M., Monna, A., Postman, M., Scodeggio, M., Seitz, S., Ziegler, B. 08 June 2016 (has links)
We present VIMOS-Very Large Telescope (VLT) spectroscopy of the Frontier Fields cluster MACS. J0416.1-2403 (z = 0.397). Taken as part of the CLASH-VLT survey, the large spectroscopic campaign provided more than 4000 reliable redshifts over similar to 600 arcmin(2), including similar to 800 cluster member galaxies. The unprecedented sample of cluster members at this redshift allows us to perform a highly detailed dynamical and structural analysis of the cluster out to similar to 2.2 r(200) (similar to 4Mpc). Our analysis of substructures reveals a complex system composed of a main massive cluster (M-200 similar to 0.9 x 10(15) M-circle dot and sigma(V r200) similar to 1000 km s(-1)) presenting two major features: (i) a bimodal velocity distribution, showing two central peaks separated by Delta V-rf similar to 1100 km s(-1) with comparable galaxy content and velocity dispersion, and (ii) a projected elongation of the main substructures along the NE-SW direction, with a prominent sub-clump similar to 600 kpc SW of the center and an isolated BCG approximately halfway between the center and the SW clump. We also detect a low-mass structure at z similar to 0.390, similar to 10' south of the cluster center, projected at similar to 3Mpc, with a relative line-of-sight velocity of Delta V-rf similar to 1700 km s(-1). The cluster mass profile that we obtain through our dynamical analysis deviates significantly from the "universal" NFW, being best fit by a Softened Isothermal Sphere model instead. The mass profile measured from the galaxy dynamics is found to be in relatively good agreement with those obtained from strong and weak lensing, as well as with that from the X-rays, despite the clearly unrelaxed nature of the cluster. Our results reveal an overall complex dynamical state of this massive cluster and support the hypothesis that the two main subclusters are being observed in a pre-collisional phase, in agreement with recent findings from radio and deep X-ray data. In this article, we also release the entire redshift catalog of 4386 sources in the field of this cluster, which includes 60 identified Chandra X-ray sources and 105 JVLA radio sources.
|
223 |
THE REDMAPPER GALAXY CLUSTER CATALOG FROM DES SCIENCE VERIFICATION DATARykoff, E. S., Rozo, E., Hollowood, D., Bermeo-Hernandez, A., Jeltema, T., Mayers, J., Romer, A. K., Rooney, P., Saro, A., Cervantes, C. Vergara, Wechsler, R. H., Wilcox, H., Abbott, T. M. C., Abdalla, F. B., Allam, S., Annis, J., Benoit-Lévy, A., Bernstein, G. M., Bertin, E., Brooks, D., Burke, D. L., Capozzi, D., Rosell, A. Carnero, Kind, M. Carrasco, Castander, F. J., Childress, M., Collins, C. A., Cunha, C. E., D’Andrea, C. B., Costa, L. N. da, Davis, T. M., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Evrard, A. E., Finley, D. A., Flaugher, B., Fosalba, P., Frieman, J., Glazebrook, K., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gutierrez, G., Hilton, M., Honscheid, K., Hoyle, B., James, D. J., Kay, S. T., Kuehn, K., Kuropatkin, N., Lahav, O., Lewis, G. F., Lidman, C., Lima, M., Maia, M. A. G., Mann, R. G., Marshall, J. L., Martini, P., Melchior, P., Miller, C. J., Miquel, R., Mohr, J. J., Nichol, R. C., Nord, B., Ogando, R., Plazas, A. A., Reil, K., Sahlén, M., Sanchez, E., Santiago, B., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Stott, J. P., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Tucker, D., Uddin, S., Viana, P. T. P., Vikram, V., Walker, A. R., Zhang, Y. 02 May 2016 (has links)
We describe updates to the redMaPPer algorithm, a photometric red-sequence cluster finder specifically designed for large photometric surveys. The updated algorithm is applied to 150 deg(2) of Science Verification (SV) data from the Dark Energy Survey (DES), and to the Sloan Digital Sky Survey (SDSS) DR8 photometric data set. The DES SV catalog is locally volume limited and contains 786 clusters with richness lambda > 20 (roughly equivalent to M500c greater than or similar to 10(14) h(70)(-1)M(circle dot)) and 0.2 < z < 0.9. The DR8 catalog consists of 26,311 clusters with 0.08 < z < 0.6, with a sharply increasing richness threshold as a function of redshift for z greater than or similar to 0.35. The photometric redshift performance of both catalogs is shown to be excellent, with photometric redshift uncertainties controlled at the sigma(z)/(1+ z) similar to 0.01 level for z greater than or similar to 0.7, rising to similar to 0.02 at z similar to 0.9 in DES SV. We make use of Chandra and XMM X-ray and South Pole Telescope Sunyaev-Zeldovich data to show that the centering performance and mass-richness scatter are consistent with expectations based on prior runs of redMaPPer on SDSS data. We also show how the redMaPPer photo-z and richness estimates are relatively insensitive to imperfect star/galaxy separation and small-scale star masks.
|
224 |
DEEP IMAGING OF ERIDANUS II AND ITS LONE STAR CLUSTERCrnojević, D., Sand, D. J., Zaritsky, D., Spekkens, K., Willman, B., Hargis, J. R. 08 June 2016 (has links)
We present deep imaging of the most distant dwarf discovered by the Dark Energy Survey, Eridanus II (Eri II). Our Magellan/ Megacam stellar photometry reaches similar to 3 mag deeper than previous work and allows us to confirm the presence of a stellar cluster whose position is consistent with Eri II's center. This makes Eri II, at M-V = -7.1, the least luminous galaxy known to host a (possibly central) cluster. The cluster is partially resolved, and at MV = -3.5 it accounts for similar to 4% of Eri II's luminosity. We derive updated structural parameters for Eri II, which has a half-light radius of similar to 280 pc and is elongated (epsilon similar to 0.48) at a measured distance of D similar to 370 kpc. The color-magnitude diagram displays a blue, extended horizontal branch, as well as a less populated red horizontal branch. A central concentration of stars brighter than the old main-sequence turnoff hints at a possible intermediate-age (similar to 3 Gyr) population; alternatively, these sources could be blue straggler stars. A deep Green Bank Telescope observation of Eri II reveals no associated atomic gas.
|
225 |
Parsec-scale radio morphology and variability of a changing-look AGN: the case of Mrk 590Koay, J. Y., Vestergaard, M., Bignall, H. E., Reynolds, C., Peterson, B. M. 21 July 2016 (has links)
We investigate the origin of the parsec-scale radio emission from the changing-look active galactic nucleus (AGN) of Mrk 590, and examine whether the radio power has faded concurrently with the dramatic decrease in accretion rates observed between the 1990s and the present. We detect a compact core at 1.6 and 8.4 GHz using new Very Long Baseline Array observations, finding no significant extended, jet-like features down to similar to 1 pc scales. The flat spectral index (alpha(8.4)(1.6) = 0.03) and high brightness temperature (T-b similar to 10(8) K) indicate self-absorbed synchrotron emission from the AGN. The radio to X-ray luminosity ratio of log(L-R/L-X) similar to -5, similar to that in coronally active stars, suggests emission from magnetized coronal winds, although unresolved radio jets are also consistent with the data. Comparing new Karl G. Jansky Very Large Array measurements with archival and published radio flux densities, we find 46 per cent, 34 per cent, and (insignificantly) 13 per cent flux density decreases between the 1990s and the year 2015 at 1.4 GHz, 5 GHz and 8.4 GHz, respectively. This trend, possibly due to the expansion and fading of internal shocks within the radio-emitting outflow after a recent outburst, is consistent with the decline of the optical-UV and X-ray luminosities over the same period. Such correlated variability demonstrates the AGN accretion-outflow connection, confirming that the changing-look behaviour in Mrk 590 originates from variable accretion rates rather than dust obscuration. The present radio and X-ray luminosity correlation, consistent with low/hard state accretion, suggests that the black hole may now be accreting in a radiatively inefficient mode.
|
226 |
LoCuSS: exploring the selection of faint blue background galaxies for cluster weak-lensingZiparo, Felicia, Smith, Graham P., Okabe, Nobuhiro, Haines, Chris P., Pereira, Maria J., Egami, Eiichi 21 December 2016 (has links)
Cosmological constraints from galaxy clusters rely on accurate measurements of the mass and internal structure of clusters. An important source of systematic uncertainty in cluster mass and structure measurements is the secure selection of background galaxies that are gravitationally lensed by clusters. This issue has been shown to be particular severe for faint blue galaxies. We therefore explore the selection of faint blue background galaxies, by reference to photometric redshift catalogues derived from the Cosmological Evolution Survey (COSMOS) and our own observations of massive galaxy clusters at z similar or equal to 0.2. We show that methods relying on photometric redshifts of galaxies in/behind clusters based on observations through five filters, and on deep 30-band COSMOS photometric redshifts are both inadequate to identify safely faint blue background galaxies with the same 1 per cent contamination level that we have achieved with red galaxies. This is due to the small number of filters used by the former, and absence of massive galaxy clusters at redshifts of interest in the latter. Nevertheless, our least contaminated blue galaxy sample yields stacked weak-lensing results consistent with our previously published results based on red galaxies, and we show that the stacked clustercentric number density profile of these faint blue galaxies is consistent with expectations from consideration of the lens magnification signal of the clusters. Indeed, the observed number density of blue background galaxies changes by similar to 10-30 per cent across the radial range over which other surveys assume it to be flat.
|
227 |
Etudes des propriétés physiques des galaxies par HerschelCiesla, Laure 29 November 2012 (has links)
Le Herschel Reference Survey (Boselli et al. 2010) est un programme clé à temps garanti conçu pour étudier les propriétés physiques du milieu interstellaire (MIS) de 323 galaxies proches, dotées de données multi-fréquences. Cet échantillon sélectionné en bande K et limité en volume est composé de galaxies couvrant tous les types de morphologies (des elliptiques aux galaxies spirales) et tous les types d'environnement (des galaxies de champs aux galaxies du centre de l'amas de la Vierge). Mon travail de thèse consiste à effectuer une photométrie submillimétrique précise de ces 323 galaxies, et de conduire une analyse statistique des propriétés du MIS de ces galaxies proches basée sur leur distribution spectrale d'énergie. Dans ce but, j'ai utilisé les modèles de Draine & Li (2007) que j'ai ajusté aux données. Les paramètres de sorties de ces modèles sont l'intensité du champ de radiation, l'abondance des PAH, la contribution des régions de photo-dissociation dans le chauffage de la poussière, et la masse de poussière. J'étudie les relations entre ces paramètres de sorties et les propriétés physiques telles que la masse stellaire, le taux de formation stellaire spécifique, la métallicité ou encore le type morphologique.Je vais présenter les études préliminaires liées à ces relations, entrainant une meilleur compréhension des processus en jeu dans le MIS, et procurer de nouveaux modèles infrarouges et submillimétriques paramétrés par les quantités physiques que je viens de citer. Ces modèles, calibrés sur les galaxies proches, seront déterminant pour l'étude des propriétés du MIS des galaxies à haut redshifts. / The Herschel Reference Survey (Boselli et al. 2010) is a guaranteed time key project aimed at studying the physical properties of the interstellar medium (ISM) of 323 nearby galaxies, covered by multi-wavelength data. This volume limited, K-band selected sample is composed of galaxies spanning the whole range of morphological types (from ellipticals to late-type spirals) and environments (from the field to the centre of the Virgo Cluster). My PhD work consists in performing a precise submillimeter photometry of every galaxies of the survey, and conducting a statistical study on the ISM properties of nearby galaxies based on the analysis of their spectral energy distributions. To achieve this goal I fit the data with the models of Draine & Li 2007. The output of Draine & Li (2007) models are the intensity of the interstellar radiation field, the PAH abundance, the contribution of photodissociation regions, the total mass of dust. I study the relations between these outputs and the physical properties such as the stellar mass, the specific star formation rate, the metallicity or the morphological type. I will present a preliminary analysis of these relations leading to a better understanding of the processes at play in the ISM and provide new infrared sets of templates from 8 to 500 microns parameterized by all the physical parameters just cited. These templates calibrated on nearby galaxies will be a benchmark for the study of the ISM properties of high redshift galaxies.
|
228 |
HYDROGEN EMISSION FROM THE IONIZED GASEOUS HALOS OF LOW-REDSHIFT GALAXIESZhang, Huanian, Zaritsky, Dennis, Zhu, Guangtun, Ménard, Brice, Hogg, David W. 21 December 2016 (has links)
Using a sample of nearly half a million galaxies, intersected by over 7 million lines of sight from the Sloan Digital Sky Survey Data Release 12, we trace H alpha + [N II] emission from a galactocentric projected radius, r(p), of 5 kpc to more than 100 kpc. The emission flux surface brightness is alpha r(p) 1.9 +/- 0.4. We obtain consistent results using only the Ha or [N II] flux. We measure a stronger signal for the bluer half of the target sample than for the redder half on small scales, r(p) < 20 kpc. We obtain a 3 sigma detection of H alpha + [N II] emission in the 50-100 kpc r(p) bin. The mean emission flux within this bin is (1.10 +/- 0.35) x 10(-20) erg cm(-2) s(-1) angstrom(-1), which corresponds to 1.87 x 10(-20) erg cm(-2) s(-1) arcsec(-2) or 0.0033 Rayleigh. This detection is 34 times fainter than a previous strict limit obtained using deep narrow-band imaging. The faintness of the signal demonstrates why it has been so difficult to trace recombination radiation out to large radii around galaxies. This signal, combined with published estimates of n(H), leads us to estimate the temperature of the gas to be 12,000 K, consistent with independent empirical estimates based on metal ion absorption lines and expectations from numerical simulations.
|
229 |
The fundamental plane of EDisCS galaxies (Corrigendum)Saglia, R. P., Sánchez-Blázquez, P., Bender, R., Simard, L., Desai, V., Aragón-Salamanca, A., Milvang-Jensen, B., Halliday, C., Jablonka, P., Noll, S., Poggianti, B., Clowe, D. I., De Lucia, G., Pelló, R., Rudnick, G., Valentinuzzi, T., White, S. D. M., Zaritsky, D. 19 December 2016 (has links)
We discovered a mistake in Eqs. (7) and (10) of Saglia et al. (2010, A&A, 524, A6), which propagates to Tables 8 and 9 and Fig. 25. We revise the tables, the figure and the affected statements in the paper. As a result, the reduction in the luminosity evolution due to the effects of the size and velocity dispersion evolution is smaller than claimed in Saglia et al. (2010).
|
230 |
The formation and evolution of dust in semi-analytic models of galaxy formationClay, Scott Jonathan January 2017 (has links)
The formation and evolution of galaxies is an interesting subject to study because it incorporates astrophysics from all scales, from the initial perturbations in the early universe creating the large scale structures that produce galaxies, right down to the evolution of stellar populations and their manipulation of the host galaxy. Simulations of galaxy formation allow us to test the various physical recipes against that which is observed in order to build a true and proper picture of what is happening in the real universe. L-Galaxies is a semi-analytic model of galaxy formation built on top of the merger trees from the Millennium dark matter simulation, and is constrained to match certain key observations at low redshift by applying a Monte Carlo Markov Chain (MCMC) method to constrain the free parameters. In using the model to make high redshift predictions of the stellar mass function, UV luminosity function and star formation rate distribution function we found that the model starts to deviate from observational constraints at the highest redshifts, particularly in high mass galaxies. In the case of the UV luminosity function, this is because the current dust model is calibrated at low redshift and lacks sophistication in that it only depends on the cold gas mass and the density of metals. To improve on this we implement a physically motivated dust model that traces the formation of dust from stellar sources, such as in the stellar winds of AGB stars and in the supernovae remnants of massive stars, the growth of dust inside molecular clouds, and the destruction of dust due to supernovae explosions. The model is fully integrated into L-Galaxies such that the evolution of dust is included in all the recipes relevant to the formation and evolution of galaxies, including: star formation; radiative feedback; cooling and reheating; and both major and minor mergers. Our results show a good fit to observations of the dust mass in galaxies both in the local universe and out to high redshift and we note a similar conclusion as in the literature that dust growth inside molecular clouds is not only necessary but the dominant source of the dust mass in these galaxies. However, stellar sources of dust can not be neglected as molecular clouds must first be seeded by dust grains in order for accretion to occur. This could be important in the very early universe, perhaps for the first galaxies that will hopefully be observed by JWST in the future, because these galaxies may not have had sufficient time to seed their molecular clouds and as such the dust produced by these stellar sources would be important for calculating the galaxies true observed luminosity. We finish by discussing the limitations of the model and discuss areas for possible improvement as well as the next steps in using this to better predict the luminosity of galaxies in future models.
|
Page generated in 0.0416 seconds