• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 778
  • 181
  • 61
  • 37
  • 16
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1326
  • 320
  • 305
  • 280
  • 271
  • 208
  • 206
  • 199
  • 182
  • 158
  • 146
  • 145
  • 142
  • 142
  • 139
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
561

Observable Signatures of Young Galaxies

White, S. D. M. 10 1900 (has links)
I review theoretical expectations for the probable appearance of galaxies during their formation phase, placing particular emphasis on the uncertainties in these ideas. Recent models suggest that formation may occur relatively recently, but that young galaxies are less spectacular than previously supposed. They may be analogous to recently discovered high red - shift radio galaxies, and indeed they may have been observed directly in faint galaxy counts. I summarise several other lines of evidence which suggest that galaxy formation may have been a recent process. Finally I give preliminary results from a detailed analytic study of the observable properties of young galaxies in a Cold Dark Matter universe. Predictions are given for faint galaxy counts and redshift distributions, and for the galaxy luminosity function.
562

Intrinsic alignments in redMaPPer clusters – I. Central galaxy alignments and angular segregation of satellites

Huang, Hung-Jin, Mandelbaum, Rachel, Freeman, Peter E., Chen, Yen-Chi, Rozo, Eduardo, Rykoff, Eli, Baxter, Eric J. 21 November 2016 (has links)
The shapes of cluster central galaxies are not randomly oriented, but rather exhibit coherent alignments with the shapes of their parent clusters as well as with the surrounding large-scale structures. In this work, we aim to identify the galaxy and cluster quantities that most strongly predict the central galaxy alignment phenomenon among a large parameter space with a sample of 8237 clusters and 94 817 members within 0.1 < z < 0.35, based on the red-sequence Matched-filter Probabilistic Percolation cluster catalogue constructed from the Sloan Digital Sky Survey. We first quantify the alignment between the projected central galaxy shapes and the distribution of member satellites, to understand what central galaxy and cluster properties most strongly correlate with these alignments. Next, we investigate the angular segregation of satellites with respect to their central galaxy major axis directions, to identify the satellite properties that most strongly predict their angular segregation. We find that central galaxies are more aligned with their member galaxy distributions in clusters that are more elongated and have higher richness, and for central galaxies with larger physical size, higher luminosity and centring probability, and redder colour. Satellites with redder colour, higher luminosity, located closer to the central galaxy, and with smaller ellipticity show a stronger angular segregation towards their central galaxy major axes. Finally, we provide physical explanations for some of the identified correlations, and discuss the connection to theories of central galaxy alignments, the impact of primordial alignments with tidal fields, and the importance of anisotropic accretion.
563

Chemical and dynamical evolution of early-type galaxies

Scott, Nicholas Adam January 2011 (has links)
In this work I have examined the spatially resolved properties of the local early- type galaxy population. Using Hubble Space Telescope and ground based pho- tometry I constructed Jeans Anisotropic Multi Gaussian Expansion models of the SAURON sample of early-type galaxies, from which I determined the depth of the local gravitational potential well, quantified by the local escape velocity, Vesc. I found that Vesc correlated tightly with the three Lick indices: Mgb, Fe5015 and Hβ. The Mgb-Vesc relation within individual galaxies is identical to that between different galaxies; the relation is both local and global. The Mgb-Vesc relation is: log Mgb = (0.35 ± 0.01) log Vesc − (0.41 ± 0.03). While the metallicity, [Z/H] is cor- related with Vesc it does not show the same local and global behaviour. Age (t) and alpha enhancement ([α/Fe]) are only weakly correlated with Vesc. A combination of [Z/H] and t is tightly correlated with Vesc, with scatter comparable to the Mgb-Vesc relation, and does show the local and global behaviour. This combination is given by: log Vesc = 0.85[Z/H] + 0.43 log t. Using the volume limited ATLAS3D sample of 260 local ETGs I examined in detail the behaviour of the Mgb-Vesc relation and its dependence on other galaxy properties. I found that systematic deviations from the relation correlate with the local environmental density and molecular gas mass of a galaxy, and with the local [α/Fe] measurement. I found that there is a population of galaxies that do not follow the relation, found only at Vesc < 400 kms−1. These galaxies have negative gradients, high central Hβ indices and young (t < 3 Gyrs) ages. Using stellar population models I demonstrated that these negative gradient galaxies are perturbed from the relation by recent star formation and will return to the relation as they age. I also describe the observation, reduction and analysis of a new sample of ETGs in the core of the Coma cluster, the highest density environment in the local Universe, observed with the SWIFT Integral Field Spectrograph. I determined the fraction of slow rotators in the sample, comparing it to results from the ATLAS3D survey, and found an enhanced slow rotator fraction in the Coma cluster. I also determined the Fundamental Plane of Coma early-type galaxies, given by: log Re = (1.20 ± 0.22) log σe − (0.79 ± 0.09) log⟨Ie⟩.
564

The clustering of dusty star-forming galaxies : connecting CMB cosmology and galaxy evolution

Addison, Graeme Erik January 2012 (has links)
In this thesis I construct various models to interpret measurements of the clustering of dusty star-forming galaxies through the angular power spectrum statistic. The goals of this work are, firstly, to facilitate the separation of the dusty galaxy contribution from the cosmic microwave background background (CMB) power spectrum, and, secondly, to improve our understanding of the physical properties of these galaxies. I present analysis of the first cross-correlation of millimeter and submillimeter sky maps, using data from the Atacama Cosmology Telescope (ACT) and the Balloon-borne Large-Aperture Submillimeter Telescope (BLAST), which revealed that the dusty galaxies that dominate the submillimeter sky are, to a significant extent, those same sources that are a nuisance contaminant for CMB cosmology. I then perform a joint fit to the ACT and BLAST power spectra as well as early results from the Planck Surveyor to construct a simple phenomenological template for the frequency and angular scale dependence of the contribution from clustered dusty galaxies to the total power spectrum. This template may be used to assist in extracting the CMB signal from future ACT and other data sets. The correlation between dusty galaxies and the thermal Sunyaev Zel'dovich effect leads to an additional contribution to the measured angular power spectrum that further hampers constraining quantities of cosmological interest. I present the first physically-motivated model for this correlation, and make predictions for its frequency and scale dependence as a CMB foreground. Finally, I combine angular power spectrum measurements from ACT, Planck and other instruments with deep far-infrared and submillimeter source number counts and constrain a model for the emission properties of these dusty galaxies. I demonstrate that the power spectrum carries significant constraining power and can improve our understanding of dust emission and star formation from unresolved objects at high redshift.
565

X-ray reverberation in Active Galactic Nuclei

Legg, Eleanor January 2015 (has links)
Narrow Line Type-1 Seyfert active galaxies can exhibit a high degree of variability in the X-ray regime. This thesis examines that variability in the context of reverberation models, in which a flare in activity has an extended, energy dependent, response. A novel method is developed for estimating the response function in different energy bands. This method is then applied to three AGN: Ark 564, 1H 0707{495, and NGC 4051. The striking evidence for reverberation revealed in Ark 564 leads to a more thorough examination of that object, combining spectral and temporal approaches to develop a plausible physical model for its behaviour. The preferred model is one in which the reverberation is due to scattering from hot Comptonizing material approximately 1500 light-seconds from the central source. This conclusion is reinforced by a simulation of the angular dependence of reflection by Comptonizing gas.
566

Dark matter and galaxies : using gravitational lensing to map their relative distributions

Koens, Lars Arnout January 2015 (has links)
Cosmological constraints from galaxy surveys are as accurate as our understanding of the relative distributions of dark matter and galaxies, known as galaxy bias. Weak gravitational lensing is a powerful probe of galaxy bias, since the distortion in the shapes of distant galaxies, called shear, is directly related to the dark matter distribution, which can be compared to the galaxy field. I look at the galaxy clustering amplitude relative to the dark matter field, quantified by the galaxy bias b, as well as the cross-correlation coefficient r, which tells us how correlated the positions of galaxies are with the dark matter. In this thesis I present several techniques to constrain galaxy bias through weak lensing, using both numerical simulations and observational data. The most commonly used method, using aperture statistics, is shown to be subject to serious systematics in the presence of noisy data and scale- and time dependence in the galaxy bias. A local comparison technique is introduced, where the foreground distribution is used to predict the shear in the background, to which it is compared. The technique is tested with simulations, concluding that it requires high quality data. A model fitting approach is proposed, based on the McDonald (2006) galaxy bias model. The two parameters of this model, a large scale bias, b1, and a parameter, b2, that quantifies the scale dependence of the bias, are insufficient in the presence of stochasticity. Therefore, R is introduced as an additional parameter to take this into account. I present galaxy bias constraints for two spectroscopic galaxy samples: the Baryon Oscillations Spectroscopic Survey (BOSS) and the WiggleZ Dark Energy Survey (WiggleZ), applying the traditional aperture method and the model fitting approach to the Red Sequence Cluster Lensing Survey (RCSLenS). Both techniques strongly suggest that galaxies trace mass, but in a complicated way, with differences in scale- and time dependence between the samples considered. The WiggleZ galaxy bias is found to be around b ~ 1:2, depending on redshift and scale, and has a low cross-correlation coefficient of r ~ 0:5 at small scales. The BOSS samples have higher bias with scale dependence around b ~ 2:0 and show no sign of stochasticity, finding r to be close enough to unity to be explained within a deterministic scenario. The observations are in line with previous galaxy bias measurements from lensing data. The thesis incorporates work on the X-ray Luminosity Function (XLF) of galaxy clusters, measured from the Wide Angle ROSAT Pointed Survey (WARPS). Evolution is quantified with a likelihood analysis and I conclude that it is driven by a decreasing number density of high luminosity clusters with redshift, while the bulk of the cluster population remains nearly unchanged out to redshift z ~ 1:1, as expected in a low density Universe. I conclude by investigating the impact of my galaxy bias measurements from BOSS and WiggleZ on the growth rate of structure, as extracted from Redshift Space Distortions (RSD). The imperfect correlation between the galaxy and matter field, as quantified by R and b2, leads to an underestimation of the true growth rate under the assumption of a linear bias. Therefore, in order to constrain galaxy bias and gravity simultaneously, future cosmological redshift surveys require high quality lensing data.
567

A SPECTROSCOPIC SURVEY OF THE FIELDS OF 28 STRONG GRAVITATIONAL LENSES: THE GROUP CATALOG

Wilson, Michelle L., Zabludoff, Ann I., Ammons, S. Mark, Momcheva, Ivelina G., Williams, Kurtis A., Keeton, Charles R. 16 December 2016 (has links)
With a large, unique spectroscopic survey in the fields of 28 galaxy-scale strong gravitational lenses, we identify groups of galaxies in the 26 adequately sampled fields. Using a group-finding algorithm, we find 210 groups with at least 5 member galaxies; the median number of members is 8. Our sample spans redshifts of 0.04 <= z(grp) <= 0.76 with a median of 0.31, including 174 groups with 0.1 < z(grp) < 0.6 The groups have radial velocity dispersions of 60 <= sigma(grp) <= 1200 km s(-1) with a median of 350 km s(-1). We also discover a supergroup in field B0712+472 at z = 0.29 that consists of three main groups. We recover groups similar to similar to 85% of those previously reported in these fields within our redshift range of sensitivity and find 187 new groups with at least five members. The properties of our group catalog, specifically, (1) the distribution of sgrp, (2) the fraction of all sample galaxies that are group members, and (3) the fraction of groups with significant substructure, are consistent with those for other catalogs. The distribution of group virial masses agrees well with theoretical expectations. Of the lens galaxies, 12 of 26 (46%) (B1422+231, B1600+434, B2114+022, FBQS J0951+2635, HE0435-1223, HST J14113+5211, MG0751+2716, MGJ1654+1346, PG 1115+080, Q ER 0047-2808, RXJ1131-1231, and WFI J2033-4723) are members of groups with at least five galaxies, and one more (B0712+472) belongs to an additional, visually identified group candidate. There are groups not associated with the lens that still are likely to affect the lens model; in six of 25 (24%) fields (excluding the supergroup), there is at least one massive (sigma(grp) >= 500 km s(-1)) group or group candidate projected within 2' of the lens.
568

Planck 2015 results

Ade, P. A. R., Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Barrena, R., Bartlett, J. G., Bartolo, N., Battaner, E., Battye, R., Benabed, K., Benoît, A., Benoit-Lévy, A., Bernard, J.-P., Bersanelli, M., Bielewicz, P., Bikmaev, I., Böhringer, H., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Bucher, M., Burenin, R., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J.-F., Carvalho, P., Catalano, A., Challinor, A., Chamballu, A., Chary, R.-R., Chiang, H. C., Chon, G., Christensen, P. R., Clements, D. L., Colombi, S., Colombo, L. P. L., Combet, C., Comis, B., Couchot, F., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., Dahle, H., Danese, L., Davies, R. D., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Désert, F.-X., Dickinson, C., Diego, J. M., Dolag, K., Dole, H., Donzelli, S., Doré, O., Douspis, M., Ducout, A., Dupac, X., Efstathiou, G., Eisenhardt, P. R. M., Elsner, F., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Fergusson, J., Feroz, F., Ferragamo, A., Finelli, F., Forni, O., Frailis, M., Fraisse, A. A., Franceschi, E., Frejsel, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Giard, M., Giraud-Héraud, Y., Gjerløw, E., González-Nuevo, J., Górski, K. M., Grainge, K. J. B., Gratton, S., Gregorio, A., Gruppuso, A., Gudmundsson, J. E., Hansen, F. K., Hanson, D., Harrison, D. L., Hempel, A., Henrot-Versillé, S., Hernández-Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hivon, E., Hobson, M., Holmes, W. A., Hornstrup, A., Hovest, W., Huffenberger, K. M., Hurier, G., Jaffe, A. H., Jaffe, T. R., Jin, T., Jones, W. C., Juvela, M., Keihänen, E., Keskitalo, R., Khamitov, I., Kisner, T. S., Kneissl, R., Knoche, J., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J.-M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Leonardi, R., Lesgourgues, J., Levrier, F., Liguori, M., Lilje, P. B., Linden-Vørnle, M., López-Caniego, M., Lubin, P. M., Macías-Pérez, J. F., Maggio, G., Maino, D., Mak, D. S. Y., Mandolesi, N., Mangilli, A., Martin, P. G., Martínez-González, E., Masi, S., Matarrese, S., Mazzotta, P., McGehee, P., Mei, S., Melchiorri, A., Melin, J.-B., Mendes, L., Mennella, A., Migliaccio, M., Mitra, S., Miville-Deschênes, M.-A., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Moss, A., Munshi, D., Murphy, J. A., Naselsky, P., Nastasi, A., Nati, F., Natoli, P., Netterfield, C. B., Nørgaard-Nielsen, H. U., Noviello, F., Novikov, D., Novikov, I., Olamaie, M., Oxborrow, C. A., Paci, F., Pagano, L., Pajot, F., Paoletti, D., Pasian, F., Patanchon, G., Pearson, T. J., Perdereau, O., Perotto, L., Perrott, Y. C., Perrotta, F., Pettorino, V., Piacentini, F., Piat, M., Pierpaoli, E., Pietrobon, D., Plaszczynski, S., Pointecouteau, E., Polenta, G., Pratt, G. W., Prézeau, G., Prunet, S., Puget, J.-L., Rachen, J. P., Reach, W. T., Rebolo, R., Reinecke, M., Remazeilles, M., Renault, C., Renzi, A., Ristorcelli, I., Rocha, G., Rosset, C., Rossetti, M., Roudier, G., Rozo, E., Rubiño-Martín, J. A., Rumsey, C., Rusholme, B., Rykoff, E. S., Sandri, M., Santos, D., Saunders, R. D. E., Savelainen, M., Savini, G., Schammel, M. P., Scott, D., Seiffert, M. D., Shellard, E. P. S., Shimwell, T. W., Spencer, L. D., Stanford, S. A., Stern, D., Stolyarov, V., Stompor, R., Streblyanska, A., Sudiwala, R., Sunyaev, R., Sutton, D., Suur-Uski, A.-S., Sygnet, J.-F., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tramonte, D., Tristram, M., Tucci, M., Tuovinen, J., Umana, G., Valenziano, L., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Wade, L. A., Wandelt, B. D., Wehus, I. K., White, S. D. M., Wright, E. L., Yvon, D., Zacchei, A., Zonca, A. 20 September 2016 (has links)
We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest systematic all-sky survey of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data sets, and is the first SZ-selected cluster survey containing > 10(3) confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the estimates of the SZ strength parameter Y-5R500 are robust to pressure-profile variation and beam systematics, but accurate conversion to Y-500 requires the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical, and X-ray data sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under-luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples.
569

Étude de quelques modèles cinétiques décrivant le phénomène d'évaporation en gravitation / Study of several kinetic models describing the evaporation phenomenon in gravitation

Carcaud, Pierre 02 June 2014 (has links)
L'étude de l'évolution de galaxies, et tout particulièrement du phénomène d'évaporation, a été pour la première fois menée à l'aide de modèles physiques, par Chandrasekhar notamment, dans les années 40. Depuis, de nouveaux modèles plus sophistiqués ont été introduits par les physiciens. Ces modèles d'évolution des galaxies sont des modèles cinétiques; bien connus et bien étudiés par les mathématiciens. Cependant, l'aspect évaporation (le fait que des étoiles sortent du système étudié) n'avait pas encore été étudié mathématiquement, à ma connaissance. La galaxie est vue comme un gaz constitué d'étoiles et le modèle consiste en une équation de Vlasov-Poisson, l'interaction étant la gravitation universelle, couplée avec au second membre un terme de collision de type Landau. On rajoute à ce modèle une condition d'évaporation qui consiste à dire que les étoiles dont l'énergie cinétique est suffisamment élevée pour quitter le système sont exclues. Ce modèle étant trop compliqué à étudier tel quel, je propose dans cette thèse plusieurs modèles simplifiés qui sont des premières étapes nécessaires à l'étude du modèle général et qui permettent de mieux comprendre les difficultés à surmonter. Dans une première partie, je m'intéresse au cas homogène en espace, pour lequel le terme de Vlasov-Poisson est remplacé par une simple dérivée en temps. Je fais une étude précise du cas à symétrie radiale en vitesse avec un potentiel Maxwellien, le terme de Landau étant alors remplacé par un terme de type Fokker-Planck, et je montre dans ce cas l'existence et l'unicité d'une solution régulière et l'existence d'un profil asymptotique des solutions. Dans le cas homogène général, je montre l'existence et l'unicité d'une solution régulière tout pendant que la masse ne s'est pas totalement évaporée. J'illustre ces résultats théoriques par des simulations numériques réalisés à l'aide de schéma numériques conservateurs. Dans une seconde partie, je m'intéresse au cas non homogène en espace en dérivant un modèle hydrodynamique pour un modèle de type Vlasov-BGK (plus simple que le modèle Vlasov-Poisson-Landau) avec évaporation. / The study of the evolution of the galaxies, and more specially of the evaporation phenomenon, was for the first time carried out, by Chandrasekhar in particular, in the 40s. Since then, more sophisticated models have been introduced by physicists. These models are kinetics models; well-known and well-studied by mathematicians. However, the evaporation (the fact that stars leave the galaxy) has never been studied before, to my knowledge. The galaxy is seen as a gaz of stars and the model is formed by a Vlasov-Poisson equation, with the gravitational interaction, coupled with Kernel of collision of Landau. A condition of evaporation is added to this model, saying the stars with a large enough kinetic energy are excluded. As this model is too complicated to be studied, I propose in this thesis several simpler models which constitute first steps toward the study of the general model and which inform us about the difficulties implied. In the first part, I am interested in the space-homogeneous model, for which the Vlasov-Poisson term is replaced by a simple time derivative. I make a precise study of the spherically symmetric case with a Maxwellian potential for which the the Landau term is replaced by a Fokker-Planck typed term, and I show the existence of a unique regular solution and the fact that this solution admits an asymptotical profile. In the general homogeneous case, I show the existence of a unique regular solution as long as the mass has not totally disappeared. Theses theoretical results are illustrated with numerical simulations obtained with conservative schemes. In the second part, I am interested in the inhomogeneous case and I derive an hydro-dynamical model for a Vlasov-BGK model (a simpler model than Vlasov-Poisson-Landau) with evaporation.
570

Multi-wavelength emissions from dark matter annihilation processes in galaxy clusters using cosmological simulations

Mekuria, Remudin Reshid January 2017 (has links)
A thesis submitted in ful lment of the requirements for the degree of Doctor of Philosophy in the School of Physics July 2017. / Based on the Marenostrum-MultiDark Simulation of galaxy Clusters (MUSIC) we develop semi-analytical models which provide multi-wavelength emission maps generated by dark matter (DM) annihilation processes in galaxy clusters and their sub-halos. We focus on radio and gamma-ray emission maps from neutralino DM annihilation processes testing two different neutralino masses, Mx = 35 GeV and 60 GeV along with two different models of the magnetic elds. A comparison of the radio ux densities from our DM annihilation model with the observed difuse radio emission from the Coma cluster shows that they are of the same order of magnitude. We determine the DM densities with a Smoothed Particle Hydrodynamics (SPH) kernel. This enables us to integrate the DM annihilation signal along any given line-of-sight through the volume of the cluster. In particular it allows us to investigate the contribution of sub-halos to the DM annihilation signal with very high resolution. Zooming in on a subset of high mass-to-light ratio (M/L) DM sub-halos, i.e. DM sub-halos with very low baryon content, we demonstrate that such targets can generate prominent annihilation signals. The radial distribution of high M/L DM sub-halos is more strongly peaked at R200crit = 1 compared to the distribution of all sub-halos which may suggest that the search for DM annihilation signals from sub-halos in clusters is most promising at R200crit. The radio ux densities from DM sub-halos are well within the sensitivity limit of the Square Kilometer Array (SKA) with an integration time of 1000 hours, and unlike clusters their gamma-ray spectrum is seen to be dominated by pion decay over a wide range of gamma-ray energies. Our model makes clear predictions for future radio and gamma-ray observations of the DM annihilation signals in clusters and their sub-halos. / LG2018

Page generated in 0.0299 seconds