• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PHAT. XIX. The Ancient Star Formation History of the M31 Disk

Williams, Benjamin F., Dolphin, Andrew E., Dalcanton, Julianne J., Weisz, Daniel R., Bell, Eric F., Lewis, Alexia R., Rosenfield, Philip, Choi, Yumi, Skillman, Evan, Monachesi, Antonela 12 September 2017 (has links)
We map the star formation history across M31 by fitting stellar evolution models to color-magnitude diagrams of each 83 '' x 83 '' (0.3 x 1.4 kpc, deprojected) region of the Panchromatic Hubble Andromeda Treasury (PHAT) survey outside of the innermost 6' x 12' portion. We find that most of the star formation occurred prior to similar to 8 Gyr ago, followed by a relatively quiescent period until similar to 4 Gyr ago, a subsequent star formation episode about 2 Gyr ago, and a return to relative quiescence. There appears to be little, if any, structure visible for populations with ages older than 2 Gyr, suggesting significant mixing since that epoch. Finally, assuming a Kroupa initial mass function from 0.1 to 100 M-circle dot, we find that the total amount of star formation over the past 14 Gyr in the area over which we have fit models is 5 x 10(10) M-circle dot. Fitting the radial distribution of this star formation and assuming azimuthal symmetry, (1.5 +/- 0.2). x 10(11) M-circle dot of stars has formed in the M31 disk as a whole, (9 +/- 2) x 10(10). M-circle dot of which has likely survived to the present after accounting for evolutionary effects. This mass is about one-fifth of the total dynamical mass of M31.
2

Identification of the Hard X-Ray Source Dominating the E > 25 keV Emission of the Nearby Galaxy M31

Yukita, M., Ptak, A., Hornschemeier, A. E., Wik, D., Maccarone, T. J., Pottschmidt, K., Zezas, A., Antoniou, V., Ballhausen, R., Lehmer, B. D., Lien, A., Williams, B., Baganoff, F., Boyd, P. T., Enoto, T., Kennea, J., Page, K. L., Choi, Y. 22 March 2017 (has links)
We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 keV from a simultaneous NuSTAR-Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swift BAT All-sky Hard X-ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observations have identified a single X-ray source from 0.5 to 50 keV as the counterpart for the first time. In the 0.5-10 keV band, the source had been classified as an X-ray Binary candidate in various Chandra and XMM-Newton studies; however, since it was not clearly associated with Swift J0042.6+4112, the previous E < 10 keV observations did not generate much attention. This source has a spectrum with a soft X-ray excess (kT similar to 0.2 keV) plus a hard spectrum with a power law of Gamma similar to 1 and a cutoff around 15-20 keV, typical of the spectral characteristics of accreting pulsars. Unfortunately, any potential pulsation was undetected in the NuSTAR data, possibly due to insufficient photon statistics. The existing deep HST images exclude high-mass (> 3 M-circle dot) donors at the location of this source. The best interpretation for the nature of this source is an X-ray pulsar with an intermediate-mass (< 3 M-circle dot) companion or a symbiotic X-ray binary. We discuss other possibilities in more detail.
3

Chemical Abundances of Local Group Globular Clusters

Sakari, Charli 28 August 2014 (has links)
Detailed chemical abundances of globular clusters in the Milky Way and M31 (the Andromeda Galaxy) are presented based on analyses of high resolution spectra. The unusual Milky Way cluster Palomar 1 (Pal 1) is studied through spectra of individual red giant branch stars; these abundances show that Pal 1 is not a classical globular cluster, and may have been accreted from a dwarf satellite of the Milky Way. The Milky Way globular clusters 47 Tuc, M3, M13, NGC 7006, and M15 are studied through their integrated light (i.e. a single spectrum is obtained for each cluster) in order to test high resolution integrated light analyses. The integrated abundances from these clusters reproduce the average abundances from individual stellar analyses for elements that do not vary within a cluster (e.g. Fe, Ca, and Ni). For elements that do vary within the clusters (e.g. Na and Mg) the integrated abundances fall within the observed ranges from individual stars. Certain abundance ratios are found to be extremely sensitive to uncertainties in the underlying stellar populations, such as input models, empirical relations to determine atmospheric parameters, interloping field stars, etc., while others (such as [Ca I/Fe I]) are largely insensitive to these effects. With these constraints on the accuracy and precision of high resolution integrated light analyses, detailed abundances are obtained for seven clusters in the outer halo of M31 that were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS) and are likely to have originated in dwarf galaxy satellites. Three clusters are relatively metal rich ([Fe/H] > −1.5) for their locations in the outer halo; their chemical abundances suggest that they likely originated in one or more fairly massive dwarf satellities. The other four are more metal-poor, and may have originated in less massive dwarf satellites. These results indicate that the Milky Way and M31 have both experienced some amount of accretion from dwarf satellites, though M31 may have had a more active accretion history. / Graduate

Page generated in 0.1428 seconds