• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 773
  • 181
  • 61
  • 37
  • 16
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1321
  • 318
  • 301
  • 278
  • 269
  • 206
  • 206
  • 199
  • 182
  • 158
  • 146
  • 145
  • 142
  • 142
  • 139
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

Candidats (proto-)amas de galaxies à grand redshift vus par le CFHT / High-redshift galaxy (proto-)cluster candidates as seen by the CFHT

Clarenc, Benjamin 11 September 2018 (has links)
Les galaxies locales ont des propriétés différentes selon leur environnement : couleur, morphologie, fraction de gaz, etc. Cette différentiation s'est opérée durant leur formation. Les observations indiquent que ce pic d'activité de formation stellaire a eu lieu vers z=2 et que les environnements denses étaient à cette époque des lieux de formation stellaire très intense, soit l'inverse d'aujourd'hui. C'est en observant les progéniteurs des amas massifs actuels que l'on pourra comprendre l’origine de ces différences. Mais les (proto-)amas à grand z sont difficilement observables. De bons candidats sont les galaxies sub-millimétriques, qui tracent directement la formation stellaire. Grâce aux observations des satellites Planck, Herschel et Spitzer, un échantillon de 82 candidats a été construit : SPHerIC (Spitzer–Planck–Herschel infrared clusters). Ses données indiquent des sources compatibles avec les progéniteurs des amas massifs locaux. 13 de ces champs ont été observés par le CFHT. J’ai tiré parti de ces nouvelles données afin de rendre SPHerIC plus robuste. Après avoir développé un pipeline photométrique pour créer les catalogues de sources JKs, j'ai généré des cartes de densité surfacique de galaxies par tranches de couleur J-Ks. J'ai défini 8 couleurs J-Ks à partir des modèles de Berta et al. (2013) pour contraindre le redshift des galaxies. Je quantifie la coïncidence entre les positions des surdensités JKs, des surdensités IRAC-rouges et des sources SPIRE-rouges. Les diagrammes couleur-magnitude (J-Ks) vs Ks couplés aux modèles de Kodama et al. (1998) semblent indiquer la présence d’une séquence rouge à z~2 pour 12 des 13 champs. Les diagrammes couleur-couleur [3.6]-[4.5] vs (J-Ks) des sources IRAC-rouges sont eux compatibles avec les modèles de galaxies en phase de formation stellaire de Berta et al. (2013), un résultat compatible avec ceux de Planck et Herschel. Toutes les analyses de nos données photométriques convergent vers la conclusion que nos candidats sont de réelles structures à grand redshift et à formation stellaire intense. Après l'observation spectroscopique de sources SPHerIC au télescope de 30 m de l'IRAM, je confirme notamment l'existence de 2 structures à z>2. À partir des flux CO, je dérive la luminosité infrarouge et le SFR dont les valeurs semblent indiquer là encore des structures en phase de formation stellaire intense. J'ai aussi contribué au projet spatial Euclid en étudiant les variations de la PSF de la caméra VIS en fonction du type d'objet observé et de sa position sur le plan focal, et je montre que les variations sont faibles pour les étoiles et galaxies standards. / The properties of local galaxies (color, morphology, gas fraction, etc.) greatly depend on their environment. The differentiation occurred during their assembly. Current observations indicate that the peak of star formation occurred around z=2 and that dense environments used to be cradles of intense star formation, unlike today. This differentiation may be explained by observing the high-z progenitors of today’s most massive systems. However, such sources are rare. Good candidates are sub-millimeter galaxies, because they directly trace star formation. A sample of 82 such candidates named SPHerIC (Spitzer–Planck–Herschel infrared clusters) was made from the data of these three satellites. From them, 13 have been observer by the CFHT. I extracted as much information as I could from those new data in order to make SPHerIC more robust. After making JKs source catalogs with a self-made photometric pipeline, I made galaxy surface density maps in J–Ks color slices. I defined 8 colors using Berta et al. (2013) galaxy templates to constrain the redshift of galaxies. I show the coincidence between the position of JKs and IRAC-red overdensities with the position of SPIRE red sources. JKs color–magnitude diagrams (J–Ks vs Ks) along with models from Kodama et al. (1998) may exhibit a z~2 red sequence in 12 out of 13 fields. NIR color–color diagrams ([3.6]–[4.5] vs J–Ks) of IRAC-red sources are compatible with starforming models from Berta et al. (2013), also compatible with Planck and Herschel results. The analyses of our photometric data all converge toward the fact that our candidates are genuine high-z star-forming structures. From spectroscopic observations at the IRAM/30m telescope, I confirm for instance 2 structures at z>2. Infrared luminosities and SFRs derived from CO fluxes are consistent with high-SFR sources. In parallel, I have been involved in the Euclid Consortium. I studied the PSF variations of the VIS imager w.r.t. the spectral type of observed objects and their position on the focal plane. I show there is a limited impact on the PSF as long as the stars and galaxies are standard.
512

Slupkové galaxie - hydrodynamické simulace typu "sticky-particles" / Shell galaxies - "sticky particles" hydrodynamical simulations

Zimandl, Martin January 2015 (has links)
Shell galaxies are usually ellipticals with concentric faint arc-like stellar structures with sharp outer edges. They originate from galactic collisions (so called mergers). According to observations, some galaxies has also gaseous structures, that can be associated with stellar shells. We carry out a few numerical simulations, in which we recreate gaseous shells throug radial collisions of small and large elliptical galaxies. Then we analyze the differences between stellar and gaseous shells. Our simulations are based on earlier models, which describes gas by using so called "sticky-particles" hydrodynamics. This approach was so far quite succesful in resolving origin of gaseous shells. Our conclusion is, that gas in preset galaxies is not sufficient to make any difference. Higher quantities on the other hand has significant effect. Powered by TCPDF (www.tcpdf.org)
513

Star Clusters in the Interacting Galaxy System Arp 284

Peterson, Bradley W., Struck, Curtis, Smith, Beverly J., Hancock, Mark 01 December 2009 (has links)
We present results from a study of protoglobular cluster candidates in the interacting galaxy system Arp 284 (NGC 7714/5) using data from the Hubble Space Telescope (HST). Previous studies of the Antennae and M51 have suggested that the majority of young massive star clusters dissolve within 20 Myr due to mass loss. We use the evolutionary synthesis code starburst99 to estimate ages and extinctions for approximately 175 clusters visible with HST. We also use lower resolution Galaxy Evolution Explorer and ground-based Hα data to estimate the ages of the giant H ii regions in which these clusters are found, and compare the Spitzer colours of these H ii regions to those of star-forming regions in other interacting systems. The ages are also used to aid in the interpretation of Chandra X-ray data. Clusters in the tidal tails of NGC 7714 are generally found to have ages less than 20 Myr, though observational limits make the significance of this result uncertain. Older clusters, though not numerous, have nearly the same spatial distribution within the imaged portion of NGC 7714 as young clusters. The cluster population in the bridge connecting the two galaxies appears to be older, but the data in this part of the system are too limited to draw firm conclusions. The ages of the giant H ii regions in NGC 7714 are generally older than those of their constituent clusters, possibly indicating that the young clusters we detect are surrounded by their dispersed predecessors.
514

Large-Scale Star Formation Triggering in the Low-Mass Arp 82 System: A Nearby Example of Galaxy Downsizing Based on UV/Optical/Mid-IR Imaging

Hancock, Mark, Smith, Beverly J., Struck, Curtis, Giroux, Mark L., Appleton, Philip N., Charmandaris, Vassilis, Reach, William T. 01 February 2007 (has links)
As part of our Spitzer Spirals, Bridges, and Tails project to help understand the effects of galaxy interactions on star formation, we analyze Galaxy Evolution Explorer UV, Southeastern Association for Research in Astronomy optical, and Spitzer IR images of the interacting galaxy pair Arp 82 (NGC 2535/6) and compare to a numerical simulation of the interaction. We investigate the multiwavelength properties of several individual star-forming complexes (clumps). Using optical and UV colors, EW(Hα), and population synthesis models we constrain the ages of the clumps and find that the median clump age is ∼ Myr. The clumps have masses ranging from a few × 106 to 109 M⊙;. In general, the clumps in the tidal features have ages similar to those in the spiral region, but are less massive. The clumps provide 33%, 36%, and 70% of the far-UV, 8.0 μm, and 24 μm emission, respectively. The 8 and 24 μm luminosities are used to estimate the far-IR luminosities and the star formation rates of the clumps. The total clump star formation rate is ∼2.0 ± 0.8 M⊙ yr -1, while the entire Arp 82 system is forming stars at a rate of ·4.9 ± 2.0 M· yr-1. We find, for the first time, stars in the H I arc to the southeast of the NGC 2535 disk. Population synthesis models indicate that all of the observed populations have young to intermediate ages. We conclude that, although the gas disks and some old stars may have formed early on, the progenitors may have been of late-type or low surface brightness, and the evolution of these galaxies seems to have halted until the recent encounter.
515

Chandra X-Ray Imaging of the Interacting Starburst Galaxy System NGC 7714/7715: Tidal Ultraluminous X-Ray Sources, Emergent Wind, and Resolved H II Regions

Smith, Beverly J., Struck, Curtis, Nowak, Michael A. 01 March 2005 (has links)
We present high spatial resolution X-ray imaging data for the interacting galaxy pair NGC 7714/7715 (Arp 284) from the Chandra X-ray telescope. In addition to the unresolved starburst nucleus, a variable point source with L x ≈ 10 40 ergs s -1 was detected 1.″5 (270 pc) to the northwest of the nucleus, coincident with a blue, extremely optically luminous (M V ≈ -14.1) point source on Hubble Space Telescope images. Eleven other candidate point-like ultraluminous X-ray sources (ULXs) were also detected in the vicinity of NGC 7714/7715, two of which exceed 10 40 ergs s -1. Ten of these appear to be associated with interaction-induced features, but only two are associated with star formation regions. We also found diffuse emission with L x ≈ 3 × 10 40 ergs s -1 extending 11″ (1.9 kpc) to the north of the nucleus. Its spectrum can be fitted with either a two-temperature MEKAL function (kT = 0.59 -0.06+0.05 and 8 -3-10 keV) or a 0.6 keV MEKAL function plus a power law (Γ = 1.8 ± 0.2). The hard component may be due to high-mass X-ray binaries (HMXBs) with possible contributions from inverse Compton radiation, while the soft component is likely from a superwind. Superbubble models imply an expansion age of ≈15 Myr, supporting previous assertions of an intermediate-age nuclear stellar population in addition to a 5 Myr starburst. We also detected extended X-ray emission associated with four extranuclear H II region complexes. The emission from these H II regions and the nuclear starburst could be due to either an enhanced population of HMXBs relative to Local Group galactic averages or to diffuse gas heated by winds from supernovae, if the X-ray production efficiency L x/L mech is high (≈5%). To estimate L x/L mech, we collected published data for well-studied H II regions and superbubbles in nearby galaxies. For H II regions with ages less than 3.5 Myr, the median L x/L mech ≈ 0.02%, while for older star formation regions, L x/L mech ≈ 0.2%-7%. Thus, it is possible that gas heating by supemovae may be sufficient to account for the observed X-rays from these H II regions. In galaxies much more distant than NGC 7714, for example, the Cartwheel galaxy, H II region complexes similar to those in NGC 7714 will be unresolved by Chandra and will mimic ULXs. No X-ray emission was detected from the Type Ib supernova SN 1999dn, with an upper limit of ≈2 × 10 38 ergs s -1.
516

Discovery of a Dwarf Poststarburst Galaxy Near a High Column Density Local Lyα Absorber

Stocke, John T., Keeney, Brian A., Mclin, Kevin M., Rosenberg, Jessica L., Weymann, R. J., Giroux, Mark L. 01 July 2004 (has links)
We report the discovery of a dwarf (MB = -13.9) poststarburst galaxy coincident in recession velocity (within uncertainties) with the highest column density absorber (NHI = 1015.85 cm-2 at cz = 1586 km s-1) in the 3C 273 sight line. This galaxy is by far the closest galaxy to this absorber, projected just 71 h70-1 kpc on the sky from the sight line. The mean properties of the stellar populations in this galaxy are consistent with a massive starburst ≈3.5 Gyr ago, whose attendant supernovae, we argue, could have driven sufficient gas from this galaxy to explain the nearby absorber. Beyond its proximity on the sky and in recession velocity, the further evidence in favor of this conclusion includes both a match in the metallicities of absorber and galaxy and the fact that the absorber has an overabundance of Si/C, suggesting recent Type II supernova enrichment. Thus, this galaxy and its ejecta are in the expected intermediate stage in the fading dwarf evolutionary sequence envisioned by Babul & Rees to explain the abundance of faint blue galaxies at intermediate redshifts. While this one instance of a QSO metal-line absorber and a nearby dwarf galaxy is not proof of a trend, a similar dwarf galaxy would be too faint to be observed by galaxy surveys around more distant metal-line absorbers. Thus, we cannot exclude the possibility that dwarf galaxies are primarily responsible for weak (NHI = 1014-1017 cm-2) metal-line absorption systems in general. If a large fraction of the dwarf galaxies expected to exist at high redshift had a similar history (i.e., they had a massive starburst that removed all or most of their gas), these galaxies could account for at least several hundred high-z metal-line absorbers along the line of sight to a high-z QSO. The volume-filling factor for this gas, however, would be less than 1%.
517

Ngc 4314. IV. Photometry of Star Clusters With the Hubble Space Telescope: History of Star Formation in the Vicinity of a Nuclear Ring

Benedict, G. Fritz, Andrew Howell, D., Jørgensen, Inger, Kenney, Jeffrey D.P., Smith, Beverly J. 01 March 2002 (has links)
Using Hubble Space Telescope (HST) WFPC2 images, we have obtained U, B, V, I, and Ha photometry for 76 star clusters in the nuclear star-forming ring of the barred spiral galaxy NGC 4314. These clusters are likely associated with an inner inner Lindblad resonance (IILR). The blue colors and Ha emission for most of these clusters imply very young ages of 1-15 Myr. Age estimates based on several reddening-free parameters indicate that the present epoch of star formation has lasted at least 30 Myr. By estimating the masses of stars in the clusters and comparing with the Ha luminosity, we conclude that a significant fraction of ongoing star formation in the nuclear ring of NGC 4314 occurs in clusters. The cluster masses identify these as young open clusters, not young globular clusters. Farther out in the galaxy, just exterior to the ring of young stars, previous ground-based observations revealed two symmetric stellar spiral arms that may be associated with an outer inner Lindblad resonance (OILR). With our HST data, we have revealed part of this structure and its colors in more detail. The spiral arm colors are consistent with stellar ages between 40 and 200 Myr. The age difference between the inner ring of young stars (IILR) and the larger oval-like feature containing the blue arms (OILR) supports an interpretation of the morphology of the nuclear region of NGC 4314 that requires a reservoir of gas that becomes more compact over time. We speculate that as the gas distribution becomes more centrally concentrated, it interacts with these two resonances. Each resonance triggers star formation, resulting in two distinct epochs of star formation.
518

New Observations of Extra-Disk Molecular Gas in Interacting Galaxy Systems, Including a Two-Component System in Stephan's Quintet

Smith, Beverly J., Struck, Curtis 01 February 2001 (has links)
We present new CO (1-0) observations of 11 extragalactic tails and bridges in nine interacting galaxy systems, almost doubling the number of such features with sensitive CO measurements. Eight of these 11 features were undetected in CO to very low CO/H I limits, with the most extreme case being the NGC 7714/5 bridge. This bridge contains luminous H II regions and has a very high H I column density (1.6 × 1021 cm-2 in the 55″ CO beam), yet was undetected in CO to rms T*R = 2.4 mK. The H I column density is higher than standard H2 and CO self-shielding limits for solar-metallicity gas, suggesting that the gas in this bridge is metal-poor and has an enhanced NH2/ICO ratio compared with the Galactic value. Only one of the 11 features in our sample was unambiguously detected in CO, a luminous H I-rich star formation region near an optical tail in the compact group Stephan's Quintet. We detect CO at two widely separated velocities in this feature, at ∼6000 and ∼6700 km s-1. Both of these components have H I and Hα counterparts. These velocities correspond to those of galaxies in the group, suggesting that this gas is material that has been removed from two galaxies in the group. The CO/ H I/Hα ratios for both components are similar to global values for spiral galaxies.
519

Structural properties of clumpy galaxies and spheroids at high redshift / Propriétés structurelles des galaxies irrégulières et des sphéroïdes dans l’univers lointain

Zanella, Anita 21 September 2016 (has links)
Cette thèse explore la question ouverte des mécanismes selon lesquels les galaxies lointaines évoluent au cours du temps. Elle se concentre sur l’étude des galaxies irrégulières et sur la cause de l’évolution en taille des galaxies passives et compactes. Bien que des régions de formation stellaire très lumineuses (clumps) soient observées dans les galaxies irrégulières depuis longtemps, leur nature et évolution sont encore débattues. Les instabilités gravitationnelles des disques ont été proposées comme la cause principale pour la formation in-situ des clumps, même si certains d’entre eux pourraient avoir une origine ex-situ. De plus, il n’est pas encore clair s’ils peuvent vivre longtemps ou si les vents stellaires les détruisent rapidement. À partir de l’étude détaillée d’un clump très jeune que nous avons découvert dans le disque d’une galaxie à redshift z~2 et de l’analyse d’un échantillon statistique, j’ai conclu que les clumps peuvent se former in-situ et qu’ils vivent typiquement 500 Myr. Ce résultat conforte les simulations numériques qui indiquent que les clumps ont un rôle important pour la croissance de leur noyau. Cela pourrait stabiliser le disque et y avoir un lien avec la formation des galaxies compactes et passives qui ont été decouvertes à haut redshift. Elles ont des tailles significativement plus petites, à masse égale, que celles de leurs homologues locales. Cette découverte a déclenché un débat concernant les possibles mécanismes qui peuvent augmenter leur taille sans altérer leur masse. J’ai analysé un échantillon de 32 galaxies et j’ai conclu que des multiples fusions mineures pourraient être les responsables principaux de leur evolution temporelle / This thesis explores the still unanswered question of how distant galaxies evolve through cosmic time: on one side it focuses on star-forming clumpy galaxies, on the other it investigates the size evolution of passive compact ones. Despite star forming clumps have been observed in high-redshift irregular galaxies since a while, their nature and fate are still highly debated. Violent gravitational disk instability in gas-rich, turbulent galaxies has been proposed as the main cause for in-situ clumps formation, although a fraction of them might have an ex-situ origin. Furthermore, clumps contribution to galaxy evolution is highly debated: it is not clear yet if they are long-lived or if stellar feedback rapidly disrupts them. From both the in-depth study of an extremely young clump that we discovered in the disk of a galaxy at redshift z ~ 2, and the analysis of a full statistical sample, I concluded that at least some clumps form in-situ due to violent disk instability and that they typically live ~ 500 Myr. This supports numerical simulations indicating that clumps are longlived and could play an important role in bulge growth. This might stabilize the disk, quench star formation and have therefore a link with the formation of the compact and passive galaxies that have been observed at high redshift. They have significant smaller sizes, at fixed stellar mass, than local counterparts. This discovery has ignited an important debate concerning the possible mechanisms that could inflate the galaxy sizes without altering much their mass. I analyzed a sample of 32 galaxies and I concluded that multiple minor mergers could be the main drivers of their observed time evolution
520

Characterizing Distant Galaxies: Spectral Energy Distribution Analysis of X-ray Selected Star Forming Galaxies

Johnson, Seth Pohatan 01 September 2013 (has links)
Comprehensive and robust analysis of galaxies found throughout cosmic time provides the means to probe the underlying characteristics of our Universe. Coupling observations and theory, spectral energy distribution (SED) fitting provides a method to derive the intrinsic properties of distant galaxies which then aid in defining galaxy populations and constraining current galaxy formation and evolution scenarios. One such population are the sub-millimeter galaxies (SMGs) whose high infrared luminosities -- typically associated with dust-obscured star formation -- and redshift distribution places them as likely key components in galaxy evolution. To fully analyze these systems, however, requires a near complete sampling of the full SED, detailed models that encapsulate the variety of physical processes and sophisticated methods for comparing the data and models. In this dissertation, we present the general propose, Monte Carlo Markov Chain (MCMC) based SED fitting routine SED Analysis Through Markov Chains (SATMC) and the insight we have gained in modeling a sample of AzTEC 1.1mm-detected SMGs. The MCMC engine and Bayesian formalism used in the construction of SATMC offers a unique view at the constraints on model parameter space that are often grossly simplified in traditional SED fitting methods. We first present the motivation behind SATMC and its MCMC algorithm. We also highlight a series of test cases that verify not only its reliability but its versatility to various astrophysical applications, including the field of photometric redshift estimation. We then present the AzTEC SMG sample and preliminary results obtained through counterpart identification, X-ray spectral modeling and SED fitting with SATMC. Finally, we present the latest work in detailed SED analysis of SMGs and how these results influence our understanding of the SMG population.

Page generated in 0.0457 seconds