Spelling suggestions: "subject:"gallium""
171 |
Untersuchung von miniaturisierten GaAs/AlGaAs Feldeffekttransistoren und GaAs/InGaAs/AlGaAs Flash-Speichern / Study of miniaturised GaAs/AlGaAs field effect transistors and GaAs/InGaAs/AlGaAs flash memoriesSchliemann, Andreas Ulrich January 2004 (has links) (PDF)
Im Rahmen dieser Arbeit wurden elektronische Bauelemente wie Feldeffekttransistoren, elektronische Speicherelemente sowie resonante Tunneldioden hinsichtlich neuartiger Transporteigenschaften untersucht, die ihren Ursprung in der Miniaturisierung mit Ausdehnungen kleiner als charakteristische Streulängen haben. Die Motivation der vorliegenden Arbeit lag darin, die Physik nanoelektronischer Bauelemente durch einen neuen Computercode: NANOTCAD nicht nur qualitativ sondern auch quantitativ beschreiben zu können. Der besondere Schwerpunkt der Transportuntersuchungen lag im nicht-linearen Transportbereich für Vorwärtsspannungen, bei denen die Differenz der elektrochemischen Potentiale im aktiven Bereich der Bauelemente bei Weitem größer als die thermische Energie der Ladungsträger ist, da nur im nicht-linearen Transportbereich die für eine Anwendung elektronischer Bauelemente notwendige Gleichrichtung und Verstärkung auftreten kann. Hierzu war es notwendig, eine detaillierte Charakterisierung der Bauelemente durchzuführen, damit möglichst viele Parameter zur genauen Modellierung zur Verfügung standen. Als Ausgangsmaterial wurden modulationsdotierte GaAs/AlGaAs Heterostrukturen gewählt, da sie in hervorragender struktureller Güte mit Hilfe der Molekularstrahllithographie am Lehrstuhl für Technische Physik mit angegliedertem Mikrostrukturlabor hergestellt werden können. Im Rahmen dieser Arbeit wurde zunächst ein Verfahren zur Bestimmung der Oberflächenenergie entwickelt und durchgeführt, das darauf beruht, die Elektronendichte eines nahe der Oberfläche befindlichen Elektronengases in Abhängigkeit unterschiedlicher Oberflächenschichtdicken zu bestimmen. Es zeigte sich, dass die so bestimmte Oberflächenenergie, einen äußerst empfindlichen Parameter zur Beschreibung miniaturisierter Bauelemente darstellt. Um die miniaturisierte Bauelemente zu realisieren, kamen Herstellungsverfahren der Nanostrukturtechnik wie Elektronenstrahllithographie und diverse Ätztechniken zum Einsatz. Durch Elektronmikroskopie wurde die Geometrie der nanostrukturierten Bauelemente genau charakterisiert. Transportmessungen wurden durchgeführt, um die Eingangs- und Ausgangskennlinien zu bestimmen, wobei die Temperatur zwischen 1K und Raumtemperatur variiert wurde. Die temperaturabhängigen Analysen erlaubten es, die Rolle inelastischer Streuereignisse im Bereich des quasi-ballistischen Transports zu analysieren. Die Ergebnisse dieser Arbeit wurden dazu verwendet, um die NANOTCAD Simulationswerkzeuge soweit zu optimieren, dass quantitative Beschreibungen von stark miniaturisierten, elektronischen Bauelementen durch einen iterativen Lösungsalgorithmus der Schrödingergleichung und der Poissongleichung in drei Raumdimensionen möglich sind. Zu Beginn der Arbeit wurden auf der Basis von modulationsdotierten GaAs/AlGaAs Heterostrukturen eine Vielzahl von Quantenpunktkontakten, die durch Verarmung eines zweidimensionalen Elektronengases durch spitz zulaufende Elektrodenstrukturen realisiert wurden, untersucht. Variationen der Splitgate-Geometrien wurden statistisch erfasst und mit NanoTCADSimulationen verglichen. Es konnte ein hervorragende Übereinstimmung in der Schwellwertcharakteristik von Quantenpunktkontakten und Quantenpunkten gefunden werden, die auf der genauen Beschreibung der Oberflächenzustände und der Erfassung der realen Geometrie beruhen. Ausgehend von diesen Grundcharakterisierungen nanoelektronischer Bauelemente wurden 3 Klassen von Bauelementen auf der Basis des GaAs/AlGaAs Halbleitersystems detailliert analysiert. / In this thesis electronic devices such as field effect transistors, electronic memory devices and resonant tunnelling have been examined with regard to new transport characteristics that have their origin in the miniaturization with extensions smaller than characteristic lengths. The motivation for this thesis was to be able to describe the physics of nanoelectronic devices via a new computer code: NANOTCAD not only by quality but also by quantity. The special emphasis of the transport examinations was on the non-linear transport regime for bias voltages with which the difference of the electro-chemical potentials in the active section of the devices is by far bigger than the thermic energy of the charges, for only in the non-linear transport regime we find the rectification and intensification necessary for the application of electronic devices. To achieve this it was necessary to characterize the devices in detail to have as many parameters for exact modelling as possible. Modulation-doped GaAs/AlGaAs heterostructures were chosen as basic material, for they can be produced in excellent structural quality with the help of molecular beam lithography at the Technical Physics department with attached microstructure laboratory. In this thesis first a method to determine the surface potential was developed and put into operation, a method that is based on the determination of the electron density of an electron gas near the surface in dependence of differently thick surface layers.We can see that the surface energy determined that way is an extremely sensible parameter for the description of miniaturized devices. To realize the miniaturized devices processing techniques of the nanostructure technology such as electron beam lithography and different etching techniques were used.With the electron microscopy the geometry of the nano-structured devices was exactly characterized. Transport measurements had been made to determine the input- and output characteristics with a temperature varying between 1 Kelvin and room temperature. The temperature-dependent analysis allow to analyze the role of inelastic scattering events in the sector of quasi-ballistic transport. The results of this thesis had been used to optimize the NANOTCAD simulation tools in a way that quantitative descriptions of strongly miniaturized electronic devices via an iterative solution algorithm of the Schroedinger equation and the Poisson equation in three dimensions are possible. The thesis starts with an examination of many quantum dot contacts which had been realized by a depletion of an two-dimensional electron gas via tapered electrode structures. Variations of the split gate geometries had been registered statistically and then been compared to NANOTCAD simulations. An excellent accordance in the threshold characteristics of quantum dot contacts and quantum dots could be found which are based on the exact description of surface states and the registration of the real geometry that had been determined with the analysis of electron-microscopic recordings of the structures. From these basic characteristics of nanoelectronic devices three classes of devices on the basis of the GaAs/AlGaAs semiconductor systems had been analyzed in detail.
|
172 |
Kopplung von kollektiven Anregungen in einlagigen und doppellagigen quasi-zweidimensionalen Elektronensystemen / Coupling of collective excitations in monolayer and bilayer quasi two-dimensional electron systemsRösch, Matthias January 2003 (has links) (PDF)
Gegenstand dieser Arbeit ist die Kopplung von kollektiven Anregungen in einlagigen und doppellagigen quasi-zweidimensionalen Elektronensystemen. Es wurden verschiedene modulationsdotierte Proben auf Basis von GaAs mit Gate-Elektrode und Gitterkoppler präpariert, um bei variabler Elektronendichte die Plasmon-Anregungen mit Hilfe der Ferninfrarot-Spektroskopie zu studieren. Die Auswertung der experimentellen Daten erfolgte durch eine selbstkonsistente Berechnung des elektronischen Grundzustandes, der Plasmon-Anregungsenergien und der optischen Absorption des Elektronengases. Zur Bestimmung der Absorption wurde dabei auf Grundlage bestehender Ansätze ein eigener Formalismus im Rahmen der Stromantwort-Theorie entwickelt. Somit gelangen der erstmalige Nachweis von optischen und akustischen Intersubband-Plasmonen in zweilagigen Elektronensystemen sowie eine detaillierte Analyse der Kopplung von Intersubband-Plasmonen an optische Phononen und an strahlende Gittermoden im Bereich der Rayleigh-Anomalie. / The coupling of collective excitations was studied in monolayer and bilayer quasi two-dimensional electron systems. Different modulation-doped samples based on GaAs were prepared with gate electrode and grating coupler in order to detect the plasmon excitations at variable electron densities by means of far-infrared spectroscopy. The experimental data were analyzed by calculating self-consistently the electronic ground state, the plasmon energies, and the optical absorption of the electron gas. To determine the optical absorption, based on existing concepts an own formalism in the framework of the current-response scheme was developed. By this, the existence of optical and acoustic intersubband modes in a bilayer system could be shown for the first time, and a detailled analysis of the coupling of intersubband plasmons to optical phonons and to radiative grating modes in the range of the Rayleigh anomaly was possible.
|
173 |
Magnetotransport effects in lateral and vertical ferromagnetic semiconductor junctions / Magnetotransport Effekte in lateralen und vertikalen ferromagnetischen HalbleiterdiodenRüster, Christian January 2005 (has links) (PDF)
This work is an investigation of giant magnetoresistance (GMR), tunneling magnetoresistance (TMR) and tunneling anisotropic magnetoresistance (TAMR)effects in (Ga,Mn) based ferromagnetic semiconductor junctions. Detailed results are published in the following articles: [1] C. Rüster, T. Borzenko, C. Gould, G. Schmidt, L.W. Molenkamp, X. Liu, T.J.Wojtowicz, J.K. Furdyna, Z.G. Yu and M. Flatt´e, Very Large Magnetoresistance in Lateral Ferromagnetic (Ga,Mn)As Wires with Nanoconstrictions, Physical Review Letters 91, 216602 (2003). [2] C. Gould, C. Rüster, T. Jungwirth, E. Girgis, G.M. Schott, R. Giraud, K. Brunner, G. Schmidt and L.W. Molenkamp, Tunneling Anisotropic Magnetoresistance: A Spin-Valve-Like Tunnel Magnetoresistance Using a Single Magnetic Layer, Physical Review Letters 93, 117203 (2004). [3] C. Rüster, C. Gould, T. Jungwirth, J. Sinova, G.M. Schott, R. Giraud, K. Brunner, G. Schmidt and L.W. Molenkamp, Very Large Tunneling Anisotropic Magnetoresistance of a (Ga,Mn)As/GaAs/(Ga,Mn)As Stack, Physical Review Letters 94, 027203 (2005). [4] C. Rüster and C. Gould, T. Jungwirth, E. Girgis, G.M. Schott, R. Giraud, K. Brunner, G. Schmidt and L.W. Molenkamp, Tunneling anisotropic magnetoresistance: Creating a spin-valve-like signal using a single ferromagnetic semiconductor layer, Journal of Applied Physics 97, 10C506 (2005). / Diese Arbeit enthält Untersuchungen von Magnetowiderstandseffekten in (Ga,Mn)As basierten ferromagnetischen Halbleiterdioden. Die Resultate wurden in den folgenden Artikeln veröffentlicht: [1] C. Rüster, T. Borzenko, C. Gould, G. Schmidt, L.W. Molenkamp, X. Liu, T.J.Wojtowicz, J.K. Furdyna, Z.G. Yu and M. Flatt´e, Very Large Magnetoresistance in Lateral Ferromagnetic (Ga,Mn)As Wires with Nanoconstrictions, Physical Review Letters 91, 216602 (2003). [2] C. Gould, C. Rüster, T. Jungwirth, E. Girgis, G.M. Schott, R. Giraud, K. Brunner, G. Schmidt and L.W. Molenkamp, Tunneling Anisotropic Magnetoresistance: A Spin-Valve-Like Tunnel Magnetoresistance Using a Single Magnetic Layer, Physical Review Letters 93, 117203 (2004). [3] C. Rüster, C. Gould, T. Jungwirth, J. Sinova, G.M. Schott, R. Giraud, K. Brunner, G. Schmidt and L.W. Molenkamp, Very Large Tunneling Anisotropic Magnetoresistance of a (Ga,Mn)As/GaAs/(Ga,Mn)As Stack, Physical Review Letters 94, 027203 (2005). [4] C. Rüster and C. Gould, T. Jungwirth, E. Girgis, G.M. Schott, R. Giraud, K. Brunner, G. Schmidt and L.W. Molenkamp, Tunneling anisotropic magnetoresistance: Creating a spin-valve-like signal using a single ferromagnetic semiconductor layer, Journal of Applied Physics 97, 10C506 (2005).
|
174 |
Characterization of Novel Magnetic Materials: Ultra-Thin (Ga,Mn)As and Epitaxial-Growth MnSi Thin Films / Charakterisierung von neuen magnetischen Materialien: ultradünne (Ga,Mn)As und epitaktisch gewachsene MnSi DünnschichtenConstantino, Jennifer Anne January 2013 (has links) (PDF)
The study of magnetic phases in spintronic materials is crucial to both our fundamental understanding of magnetic interactions and for finding new effects for future applications.
In this thesis, we study the basic electrical and magnetic transport properties of both epitaxially-grown MnSi thin films, a helimagnetic metal only starting to be developed within our group, and parabolic-doped ultra-thin (Ga,Mn)As layers for future studies and applications. / Um einerseits ein fundamentales Verständnis magnetischer Wechselwirkungen zu erhalten und andererseits neue Effekte für zukünftige Anwendungen zu finden, ist es entscheidend, magnetische Phasen spintronischer Materialien zu untersuchen. In dieser Arbeit fokussieren wir uns auf grundlegende elektrische und magnetische Transporteigenschaften zweier Materialsysteme. Das sind zum Ersten ultradünne (Ga,Mn)As Filme mit parabolischen Dotierprofilen, und zum Zweiten epitaktisch gewachsene Dünnschichten aus MnSi, einem helimagnetischen Metal, dessen Entwicklung seit Kurzem in unserer Gruppe vorangetrieben wird.
|
175 |
A Study of Seebeck and Nernst effects in (Ga,Mn)As/normal semiconductor junctions / Eine Studie von Seebeck und Nernst Effekten in (Ga,Mn)As/Halbleiter-ÜbergängenNaydenova, Tsvetelina January 2014 (has links) (PDF)
The discovery of the Giant Magneto Resistance (GMR) effect in 1988 by Albert Fert [Baib 88] and Peter Grünberg [Bina 89] led to a rapid development of the field of spintronics and progress in the information technology. Semiconductor based spintronics, which appeared later, offered a possibility to combine storage and processing in a single monolithic device. A direct result is reduced heat dissipation. The observation of the spin Seebeck effect by Ushida [Uchi 08] in 2008 launched an increased interest and encouraged research in the field of spin caloritronics. Spintronics is about the coupling of charge and spin transport. Spin caloritronics studies the interaction between heat and spin currents. In contrast to spintronics and its variety of applications, a particular spin-caloritronic device has not yet been demonstrated. However, many of the novel phenomena in spin caloritronics can be detected in most spintronic devices. Moreover, thermoelectric effects might have a significant influence on spintronic device operation. This will be of particular interest for this work. Additional knowledge on the principle of coupling between heat and spin currents uncovers an alternative way to control heat dissipation and promises new device functionalities.
This thesis aims to further extend the knowledge on thermoelectrics in materials with strong spin-orbit coupling, in this case the prototypical ferromagnetic semiconductor (Ga,Mn)As. The study is focused on the thermoelectric / thermomagnetic effects at the interface between a normal metal and the ferromagnetic (Ga,Mn)As. In such systems, the different interfaces provide a condition for minimal phonon drag contribution to the thermal effects. This suggests that only band contributions (a diffusion transport regime) to these effects will be measured.
Chapter 2 begins with an introduction on the properties of the studied material system, and basics on thermoelectrics and spin caloritronics. The characteristic anisotropies of the (Ga,Mn)As density of states (DOS) and the corresponding magnetic properties are described. The DOS and magnetic anisotropies have an impact on the transport prop- erties of the material and that results in effects like tunneling anisotropic magnetores- istance (TAMR) [Goul 04]. Some of these effects will be used later as a reference to the results from thermoelectric / thermomagnetic measurements. The Fingerprint tech- nique [Papp 07a] is also described. The method gives an opportunity to easily study the anisotropies of materials in different device geometries.
Chapter 3 continues with the experimental observation of the diffusion thermopower of (Ga,Mn)As / Si-doped GaAs tunnel junction. A device geometry for measuring the diffusion thermopower is proposed. It consists of a Si - doped GaAs heating channel with a Low Temperature (LT) GaAs / (Ga,Mn)As contact (junction) in the middle of the channel. A single Ti / Au contact is fabricated on the top of the junction. For transport characterization, the device is immersed in liquid He. A heating current technique is used to create a temperature difference by local heating of the electron system on the Si:GaAs side. An AC current at low frequency is sent through the channel and it heats the electron population in it, while the junction remains at liquid He temperature (experimentally con- firmed). A temperature difference arises between the heating channel and the (Ga,Mn)As contact. As a result, a thermal (Seebeck) voltage develops across the junction, which we call tunnelling anisotropic magneto thermopower (TAMT), similar to TAMR. TAMT is detected by means of a standard lock-in technique at double the heating current frequency (at 2f ). The Seebeck voltage is found to be linear with the temperature difference. That dependence suggests a diffusion transport regime. Lattice (phonon drag) contribution to the thermovoltage, which is usually highly nonlinear with temperature, is not observed.
The value of the Seebeck coefficient of the junction at 4.2 K is estimated to be 0.5 µV/K.
It is about three orders of magnitude smaller than the previously reported one [Pu 06]. Subsequently, the thermal voltage is studied in external magnetic fields. It is found that the thermopower is anisotropic with the magnetization direction. The anisotropy is explained with the anisotropies of the (Ga,Mn)As contact. Further, switching events are detected in the thermopower when the magnetic field is swept from negative to positive fields. The switchings remind of a spin valve signal and is similar to the results from previous experiments on spin injection using a (Ga,Mn)As contacts in a non-local detection scheme. That shows the importance of the thermoelectric effects and their possible contribution to the spin injection measurements. A polar plot of the collected switching fields for different magnetization angles reveals a biaxial anisotropy and resembles earlier TAMR measurements of (Ga,Mn)As tunnel junction. A simple cartoon model is introduced to describe and estimate the expected thermopower of the studied junction. The model yields a Fermi level inside of the (Ga,Mn)As valence band. Moreover, the model is found to be in good agreement with the experimental results.
The Nernst effect of a (Ga,Mn)As / GaAs tunnel junction is studied in Chapter 4. A modified device geometry is introduced for this purpose. Instead of a single contact on the top of the square junction, four small contacts are fabricated to detect the Nernst signal. A temperature difference is maintained by means of a heating current technique described in Chapter 3. A magnetic field is applied parallel to the device plane. A voltage drop across two opposite contacts is detected at 2f. It appears that a simple cosine function with a parameter the angle between the magnetization and the [100] crystal direction in the (Ga,Mn)As layer manages to describe this signal which is attributed to the anomalous Nernst effect (ANE) of the ferromagnetic contact. Its symmetry is different than the Seebeck effect of the junction. For the temperature range of the thermopower measurements the ANE coefficient has a linear dependence on the temperature difference (∆T). For higher ∆T, a nonlinear dependence is observed for the coefficient. The ANE coefficient is found to be several orders of magnitude smaller than any Nernst coefficient in the literature. Both the temperature difference and the size of the ANE coefficient require further studies and analysis. Switching events are present in the measured Nernst signal when the magnetic field is swept from positive to negative values. These switchings are related to the switching fields in the ferromagnetic (Ga,Mn)As. Usually, there are two states which are present in TAMR or AMR measurements - low and high resistance. Instead of that, the Nernst signal appears to have three states - high, middle and low thermomagnetic voltage. That behaviour is governed not only by the magnetization, but also by the characteristic of the Nernst geometry.
Chapter 5 summarizes the main observations of this thesis and contains ideas for future work and experiments. / Die Entdeckung des Riesenmagnetowiderstands (GMR)-Effekts im Jahr 1988 von Albert Fert [Baib 88] und Peter Grünberg [Bina 89] führte zu einer raschen Entwicklung auf dem Gebiet der Spintronik und damit zu Fortschritten in der Informations-Technologie. Der darauf aufbauende Bereich der halbleiterbasierten Spintronik bietet darüber hinaus Möglichkeiten Speicherung und Datenverarbeitung in einem einzigen monolithischen Bauteil zu kombinieren. Eine direkte Folge davon ist eine reduzierte Wärmeableitung. Die Beobachtung des Spin-Seebeck-Effekts von Uchida [Uchi 08] im Jahr 2008 brachte ein erhöhtes Interesse hervor und führte zur Forschung im Bereich der Spin-Caloritronics. Während in der Spintronik die Kopplung von Ladungs-und Spintransport untersucht wird, liegt der Fokus der Spin-Caloritronics auf der Wechselwirkungen zwischen Wärme-und Spinstr¨omen. Im Unterschied zur Spintronik mit ihrer Vielzahl von Anwendungen wurde ein reines Spin-Caloritronics Bauteil noch nicht realiziert. Doch viele der neuen Phänomene in der Spin-Caloritronics können in den meisten Spintronik-Bauteilen auftreten. Darüber hinaus könnten thermoelektrische Effekte einen wesentlichen Einfluss auf den Betrieb der Spintronik-Bauteile haben. Dieser Punkt wird von besonderem Interesse für diese Arbeit sein. Tieferes Verständnis der Prinzipien der Kopplung zwischen Wärme- und Spinströmen kann einen alternativen Weg aufzeigen um die Wärmeableitung zu kontrollieren und verspricht neue Funktionalitäten.
Diese Dissertation zielt darauf ab die Kenntnisse über die Thermoelektrik in Materialien mit starker Spin-Bahn-Wechselwirkung zu erweitern, in diesem Fall der prototypische ferromagnetische Halbleiter (Ga,Mn)As. Die Untersuchungen konzentrieren sich auf die thermoelektrischen und -magnetischen Effekte an der Grenzfläche zwischen einem normalen Metall und dem ferromagnetischen (Ga,Mn)As. In solchen Systemen führen die unterschiedlichen Grenzflächen zu einem minimalen Beitrag des Phonon-Drags zu den thermischen Effekten. Dies legt nahe, dass nur Bandbeiträge (ein Diffusionstransport- Regime) auf diese Effekte gemessen werden.
Kapitel 2 beginnt mit einer Einführung über die Eigenschaften der untersuchten Materialsysteme, Grundlagen der Thermoelektrik und Spin-Caloritronics. Die charakteristischen Anisotropien der Zustandsdichte (DOS) von (Ga,Mn)As und die dadurch entstehenden magnetischen Eigenschaften werden beschrieben. Die DOS und die magnetische Anisotropie haben einen Einfluss auf die Transporteigenschaften des Materials und führen zu Effekten wie dem anisotropen Tunnelmagnetowiderstand (TAMR) [Goul 04]. Einige dieser Effekte werden im Weiteren als eine Referenz für die Ergebnisse der thermoelektrischen und magnetischen Messungen verwendet. Die Anisotropie- Fingerprintabduck-Technik [Papp 07a] wird ebenfalls beschrieben. Die Methode bietet die Möglichkeit, die Material-Anisotropien in verschiedenen Geometrien einfach zu unter- suchen.
Kapitel 3 schließt sich mit der experimentellen Beobachtung der Diffusions - Thermospannung an einer (Ga,Mn)As / Si-dotierten GaAs-Tunnelübergang an. Eine Bauteilgeometrie zur Messung der Diffusions-Thermospannung wird vorgeschlagen. Sie besteht aus einem Si-dotierten GaAs-Heiz-Kanal mit einem GaAs/(Ga,Mn)As-Kontakt in der Mitte des Kanals. Ein einzelner Ti/Au-Kontakt wird an der Oberseite des Übergangs aufgebracht. Die Charakterisierung der Probe erfolgt bei 4.2 K. Ein Wechselstrom mit niedriger Frequenz wird durch den Kanal gesendet und erhöht dadurch dessen Temperatur, während der (Ga,Mn)As-Kontakt bei konstanter Temperatur im Helium-Bad bleibt. Aufgrund der Temperaturdifferenz zwischen dem Heizungskanal und dem (Ga,Mn)As- Kontakt entsteht eine thermische (Seebeck-)Spannung, die wir als anisotrope Tunnelmagnetothermospannung bezeichnen (TAMT), ähnlich dem TAMR. TAMT wird mittels Lock-In-Technik bei der doppelten Frequenz des Heizstroms detektiert. Die Seebeck- Spannung wächst dabei linear mit der Temperaturdifferenz an, was auf das Vorliegen eines reinen Diffusionstransport-Regimes hinweist. Ein Beitrag des Gitters (Phonon-Drag) zur Thermospannung, der in der Regel stark nichtlinear von der Temperatur abhängt, wird
nicht beobachtet. Der Wert des Seebeck-Koeffizienten des Übergangs bei 4.2 K wird auf
0.5 µV/K abgeschätzt. Das ist ein um drei Größenordnungen kleinerer Betrag als zuvor
von [Pu 06] berichtet. Anschließend wird die thermische Spannung unter Einfluss eines
äußeren Magnetfelds untersucht. Es zeigt sich, dass die Thermospannung eine Anisotropie mit der Magnetisierungsrichtung aufweist. Diese Anisotropie wird mit den bekannten Eigenschaften des (Ga,Mn)As-Kontakts erläutert. Ferner werden Schaltvorgänge in der Thermospannung detektiert, wenn das Magnetfeld von negativen zu positiven Werten geändert wird. Die Schaltvorgänge erinnern an die Signale eines Spin-Ventils. Dieses Verhalten ist vergleichbar mit den Ergebnissen aus früheren Experimenten an Spininjektion mithilfe eines (Ga,Mn)As-Kontakts in nicht-lokaler Messgeometrie. Dies betont die Bedeutung der thermoelektrischen Effekte und deren mögliche Auswirkungen auf die Spininjektions-Messungen. Ein Polardiagramm der gesammelten Schaltfelder für verschiedene Magnetisierungswinkel zeigt eine zweiachsige Anisotropie und ähnelt früheren TAMR-Messungen an (Ga,Mn)As-Tunnelbarrieren. Ein einfaches Modell wird zur Beschreibung und Abschätzung der erwarteten Thermospannung am untersuchten Übergang
eingeführt. Eine gute Übereinstimmung des Modells mit den experimentellen Ergebnissen ist evident.
Der Nernst-Effekt an einem (Ga,Mn)As/GaAs-Kontakt wird im vierten Kapitel untersucht. Hierfür wird eine Modifizierung der Proben-Geometrie vorgenommen. Anstelle des einzelnen Kontakts oberhalb der Übergangsregion werden vier kleine Kontakte hergestellt. Die Temperaturdifferenz wird wiederum mittels Heizkanal gewährleistet. Das Magnetfeld ist parallel zur Probenoberfläche orientiert. Zwischen sich gegenüberliegenden Kontakten wird eine Spannungsdifferenz bei 2f detektiert. Es stellt sich heraus, dass eine Kosinus- Funktion, mit dem Winkel zwischen der Magnetisierung und der [100]-Kristallrichtung der (Ga,Mn)As Schicht als Parameter, das gemessene Signal gut beschreibt. Dieses wird auf den anormalen Nernst-Effekt (ANE) des ferromagnetischen Kontakts zurückgeführt. Die Symmetrie des ANE unterscheidet sich von der des Seebeck- Effekts des Übergangs. Im Temperaturintervall, in dem die Thermo-Spannung untersucht wurde, zeigt auch der
ANE-Koeffizient lineares Verhalten mit der Temperaturdifferenz (∆T). Für größere ∆T jedoch zeigt sich eine nichtlineare Abhängigkeit. Der ermittelte ANE Koeffizient ist um mehrere Größenordnungen kleiner als jeder andere veröffentlichte Wert. Sowohl die Temperaturabhängikeit als auch die Größe des ANE bedürfen weiterer Untersuchungen. Wird das Feld von positiven zu negativen Werten gefahren, zeigen sich Schaltvorgänge im Nernst Signal. Diese Schaltvorgänge stehen im Zusammenhang mit den Schaltfeldern des ferromagnetischen (Ga,Mn)As. Normalerweise existieren bei TAMR oder AMR Messungen zwei Zustände, einer mit geringem und einer mit hohem Widerstand. Das gemessene Nernst Signal dagegen zeigt drei Zustände - hohe, mittlere und geringe Thermomagnetische Spannung. Dieses Verhalten ist nicht nur von der Magnetisierung, sondern auch von der Charakteristik der Nernst-Geometrie beeinflusst.
Kapitel 5 fasst die wichtigsten Erkenntnisse dieser Arbeit zusammen und gibt einen Ausblick auf zukünftige Arbeiten und Experimente.
|
176 |
Herstellung und Charakterisierung spintronischer und caloritronischer (Ga,Mn)As-Nanostrukturen / Fabrication and Characterization of spintronic and caloritronic (Ga,Mn)As nanostructuresTavakoli, Kia January 2014 (has links) (PDF)
Die elektronischen Bauteile, die aus unserer technischen Welt kaum wegzuddenken sind, werden immer kleiner. Aktuelle ICs bestehen zum Beispiel aus Milliarden von Transistoren, von denen jeder einzelne kleiner als 100nm (dem 100-stel des typischen Durchmessers eines Menschenhaars) ist. Dass die Entwicklung auch zukünftig weiter dem Trend des Mooreschen Gesetzes folgen wird, gilt hierbei als unbestritten.
Die interessanteste Fragestellung der Halbleiter- und Nanostrukturforschung in diesem Zusammenhang ist: Kann man die weitere Entwicklung der Informations- und Kommunikationstechnik dadurch erreichen, dass man die Miniaturisierung der Transistoren in Mikroprozessoren und Speicherbauelementen weiter vorantreibt oder ist man auf gänzlich neue Wege angewiesen?
Bei der weitergehenden Miniaturisierung ist die größte Hürde darin zu suchen, ob man in der
Lage sein wird die Verbrauchsleistung dieser Bauelemente weiter zu reduzieren, um die Überhitzung der Bauteile in den Griff zu bekommen und nicht zuletzt auch, um Energie zu sparen.
Die heutige Elektronik hat ihre Grundlagen in den 60er Jahren. Diese Art der Elektronik ist jedoch hinsichtlich der Effizienzsteigerungen und vor allem der Wärmeentwicklung an ihre Grenzen gestoßen. Hauptursache für diese problematische Wärmeentwicklung sind die elektrischen Verbindungen, die die Informationen zwischen der halbleiterbasierten Datenverarbeitung und den metallischen Speicherelementen hin und hertransportieren. Obwohl diese elektrischen Verbindungen zum aktuellen Zeitpunkt aus der Computerarchitektur nicht weg zu denken sind, ist es eines der Hauptziele diese Verbindungen nicht mehr verwenden zu müssen. Dies kann jedoch nur erreicht werden, wenn es gelingt, die Speicherelemente und Datenverarbeitung in einem einzigen Element (Halbleiter) zu vereinen.
Bisher wurde die Ladung eines Elektrons für die Verarbeitung von elektrischen Informationen
bzw. Zuständen benutzt. Was wäre jedoch, wenn man diese bisherige Basis völlig ändert? Der
Spin der Elektronen ist ein viel effektiverer Informationsträger als die Ladung der Elektronen
selbst, nicht zuletzt deshalb, weil die Veränderung des Spins eines Elektrons im Vergleich zu
dessen Bewegung einen weitaus geringeren Energiebetrag benötigt [1]. Die Technik, die zusätzlich zur Informationsverarbeitung durch makroskopische Elektronenströme den viel effektiveren Spin-Quantenzustand der Elektronen oder Löcher als Freiheitsgrad nutzt, ist die sogenannte Spintronik1. Die Spinfreiheitsgrade eröffnen, wegen der längeren Phasenkohärenzlänge, im Vergleich zu den orbitalen Freiheitsgraden, völlig neue Wege für zukünftige Entwicklungen wie z.B. den Quantencomputer. Damit wäre die Entwicklung niederenergetischer Bauelemente möglich, die fast keine Wärmeentwicklung aufweisen. Wegen dieser vielen Vorteile hat sich die Spintronik in Rekordzeit von einer interessanten wissenschaftlichen Beobachtung in Rekordzeit zu einer marktbewegenden Anwendung weiterentwickelt (Nobelpreis 2007). Seinen Anfang nahm diese Entwicklung 1988 mit der Entdeckung des GMR-Effekts. Nach nur 9 Jahren wurden 1997 erste Festplatten-Leseköpfe eingesetzt, die sich diesen Effekt zu Nutze machten. Leseköpfe, die den Riesenmagnetwiderstand nutzen, waren nunmehr um ein Vielfaches empfindlicher als es die konventionelle Technik zugelassen hätte. Die Speicherdichte und damit die Kapazitäten der Festplatten konnte somit erheblich gesteigert und Festplatten mit zuvor nie gekannter Speicherkapazität preiswert produziert werden. Seit dieser Zeit rückt der Elektronenspin immer weiter in den Brennpunkt von Forschung und Entwicklung.
Da sich der elektrische Widerstand von Halbleitern in einem weiten Bereich manipulieren lässt
(was für ferromagnetische Metalle nicht der Fall ist), werden logische Bauelemente aus halbleitenden Materialien hergestellt. Im Gegensatz dazu sind ferromagnetische Metalle sehr gute Kandidaten für die Speicherung von Informationen. Dies liegt vor allem daran, dass zufällige Magnetfelder viel schwächer sind, als zufällige elektrische Felder, was ferromagnetische Systeme wesentlich unanfälliger macht. Daher sind die magnetischen Speicher nicht flüchtig und zudem müssen deren Informationsgehalte nicht wie bei DRAM immer wieder aufgefrischt werden. Um die jeweiligen Vorteile der Materialklassen – die magnetisch energiesparende sowie dauerhafte Speicherfähigkeit der Metalle und die logischen Operationen der Halbleiter – miteinander kombinieren zu können und damit neuartige Bauelemente wie z.B. MRAMs (logische Operationen und dauerhafte Speicherung) zu bauen, sind ferromagnetischen Halbleiter unverzichtbar. Auf dieser Basis könnten Speicherelemente und Datenverarbeitung in einem einzigen Element (Halbleiter) dargestellt werden. Zugleich braucht man aber auch neue Wege, um diese Speicher zu magnetisieren und später auslesen zu können. Ein weiterer Vorteil liegt zudem darin, dass hierzu kein Einsatz beweglicher Teile notwendig ist. Die Magnetisierungskontrolle muss aber temperaturunabhängig sein!
Der am besten erforschte ferromagnetische Halbleiter ist (Ga,Mn)As, der deswegen die Modellrolle einnimmt und als Prototyp für alle ferromagnetischen Halbleiter dient. Die Kopplung seiner magnetischen und halbleitenden Eigenschaften durch Spin-Bahn-Wechselwirkung ist die Ursache vieler neuer Transportphänomene in diesem Materialsystem. Diese Phänomene sind vielfach die Grundlage für neuartige Anwendungen, Bauteildesigns und Wirkprinzipien.
Das Ziel dieser Arbeit ist es, die interessanten Anisotropien in (Ga,Mn)As, die von der sehr starken Spin-Bahn-Kopplung im Valenzband herrühren zu nutzen, sowie neue spinbezogene Effekte in verschiedenen magnetischen Bauelementen zu realisieren.
Die vorliegende Arbeit gliedert sich wie folgt: In Kapitel 1 wird auf die grundlegenden Eigenschaften des (Ga,Mn)As und einige neuartige Spineffekten, die dieses Material mit sich bringt, eingegangen. Das zur Erzeugung dieser Effekte notwendige fertigungstechnische Wissen, für die lithografische Erzeugung der spintronisch bzw. caloritronisch aktiven Nanostrukturen, wird im Kapitel 2 beschrieben.
Um mit dieser Welt der Spineffekte „kommunizieren“ und die Effekte kontrollieren zu können,
sind entsprechend angepasste und funktionsfähige Kontaktierungen notwendig. Mit der detaillierten Herstellung und Analyse dieser Kontakte beschäftigt sich das Kapitel 3. Es wurden
zwei Arten von Kontakten hergestellt und bei den Proben eingesetzt: in situ (innerhalb der
MBE-Wachstumskammer) und ex situ. Zusammenfassend lässt sich sagen, dass bei der ex situ-Probenpräparation, die Reproduzierbarkeit der Kontakte, besonders bei logisch magnetischen Elementen, nicht gewährleistet werden konnte. Bei funktionierender Kontaktierung war das magnetische Verhalten dann jedoch stets gleich. Bei den in situ-Kontakten war zwar einerseits das elektrische Verhalten reproduzierbar und sehr gut, aber das magnetische Verhalten war nicht zufriedenstellend, da die Relaxation nicht vollständig stattfand.
Im Rahmen dieser Arbeit konnten die ex situ-Kontakte optimiert werden. Dabei wurde auf die
Problematiken bereits existierender Proben eingegangen und es wurden verschiedene Lösungsan sätze dafür gefunden. So konnte z.B. gezeigt werden, dass die Haftungsprobleme hauptsächlich auf dem unsaubere Oberflächen zurückzuführen sind. Jede Schicht, die zwischen aufgedampfter Metallschicht und dem dotierten Halbleiter bestehen bleibt, unabhängig davon, ob es sich dabei um eine oxidierte Schicht, Lackreste oder eine, zum Teil verarmte Schicht handelt, beeinträchtigt die Funktionalität der Kontakte. Je kleiner die Dimension der Kontakte, desto stärker wirkt sich die unsaubere Oberfläche aus. So konnte gezeigt werden, dass ab einer Größe von ca. 500nm_500nm die Zuverlässigkeit der Kontakte elementar von der Reinheit der Oberflächen und deren Homogenität beeinflusst wird. Zur Abwendung dieser Komplikationen werden verschiedene Lösungsansätze vorgeschlagen. Wird die Oberfläche mit hochenergetischen Ionen versetzt, verarmt deren Dotierung, was zu einer massiven Änderung der Leitfähigkeit führt. Daher wurden entweder völlig andere Prozessparameter zur Reinigung eingesetzt, die den dotierten HL nicht verarmen oder einer der nasschemischen Schritte wurde so angepasst, dass die extrem verarmte Schicht der HL-Oberfläche entfernt wurde.
Die einfachsten spintronischen Bauelemente (Streifen) und magnetischen Logikelemente sowie
deren Ergebnisse werden im Kapitel 4 diskutiert.
Hier wurde eindeutig gezeigt, dass die Streifen bei niedrigen Stromdichten nicht völlig uniaxial
sind, während bei erhöhten Stromdichten die Uniaxialität immer dominanter wird. Dies war
jedoch zu erwarten, da bei erhöhten Stromdichten die Temperatur auch ansteigt und da, bei
erhöhter Temperatur, die biaxiale Anisotropie mit M4, die uniaxiale aber jedoch nur mit M2
abfällt – die dominante Anisotropie wechselt folglich von biaxial zu uniaxial [2]. Im Rahmen dieser Arbeit wurden die Grundlagen gelegt, um Speicherelemente und Datenverarbeitung in einem einzigen Halbleiter (Ga,Mn)As herzustellen. Auf Basis dieser Arbeit und den dabei gewonnenen litographischen Erkentnissen wurden, in nachfolgenden Arbeiten, solche Bauelemente realisiert [3].
Spin-Kaloritronik:
Wie schon Eingangs erwähnt, wird im Allgemeinen davon ausgegangen, dass die Miniaturisierung der zukünftigen Elektronik weitergeführt werden kann. Bei stetiger Verkleinerung der Strukturen kommt es in heutigen Anwendungen zu immer größeren Problemen bei der Wärmeabfuhr. Die Folgen der Temperaturdifferenzen innerhalb der Strukturen führen dabei zu sog. Hotspots oder sogar Materialschäden. Temperaturunterschiede müssen aber nicht nur negative Auswirkungen
haben. So wurde an einem ferromagnetischen System aus Nickel, Eisen und Platin der sogenannte Spin-Seebeck-Effekt gemessen, bei dem die Elektronen in den Regionen verschiedener Temperatur unterschiedliche Spinpolarisationen zeigen [4].
Eine Batterie, die diesen spinpolarisierten Strom nutzt, könnte einen entscheidenden Fortschritt
in der Spintronik bedeuten. Dieser Bereich der Forschung an thermoelektrischen Effekten, bei
denen ferromagnetische Materialien involviert sind, wird auch „spin-caloritronics“ genannt [5].
Die Kapitel 5 und 6 beschäftigen sich mit einer neuartigen Klasse spintronischer Bauteile. whärend das Kapitel 5 sich mit einer neuartigen Klasse spintronischer Bauteile, für die von uns
als Bezeichnung TAMT („tunnel anisotropic magneto thermopower“) eingeführt wurde, beschäftigt, wird in Kapitel 6 an einem veränderten Probenlayout der Nernst-Effekt nachgewiesen.
Die Geometrie wurde in beiden fällen so gewählt und hergestellt, dass durch die Anisotropien
des (Ga,Mn)As die beiden thermoelektrische Effekte (Seebeck- und Nernst-Effekt) auf einen
n+-p+-Übergang übertragen werden konnten. Durch einen Strom, in einem mit Silizium hoch
dotierten GaAs-Heizkanal, kann jeweils ein vertikaler Temperaturgradient erzeugt werden. Die
hierbei entstehenden Thermospannungen wurden durch eine vollständige elektrische Charaktri sierungsmessung mit Hilfe präziser Lock-in-Verstärker-Technik detektiert.
Das Kapitel 5 beschäftigt sich mit allen Bereichen, von der Idee bis hin zu Messungen und Analysen des Seebeck-Effektes an einem n-p-Übergang (TAMT). Außerdem ist ein sehr einfaches numerisches Modell dargestellt, dass den gefundenen Effekt theoretisch beschreibt.
Durch die bekannten thermoelektrischen Effekte ergibt sich ein Temperaturgradient der immer
zu einer Thermospannung und somit zu einem Thermostrom entlang des Gradienten führt. Für
zukünftige Entwicklungen ist es demnach wichtig, diese Effekte zu beachten und diese bei elektrischen Messungen an Nanostrukturen als mögliche, zusätzliche Ursache eines Messsignals in Betracht zu ziehen.
In den vorliegenden Proben ist der Seebeck-Effekt stark anisotrop, mit einem größeren Thermospannungswert für Magnetisierungen entlang der magnetisch harten Achsen des (Ga,Mn)As.
Es wurde ein einfaches Model entwickelt, welches das Tunneln von Elektronen zwischen zwei
unterschiedlich warmen Bereichen erklärt. Die Abhängigkeit des Effekts von der Temperatur des Heizkanals wurde anhand dieses Models sowohl qualitativ als auch größenordnungsmäßig korrekt beschrieben.
Die Nernst-Proben wurden von der Theorie bis zur Herstellung so entwickelt, dass in derselben
Anordnung eine im (Ga,Mn)As senkrecht zum Temperaturgradienten gerichtete Spannung
zusätzlich gemessen werden konnte. Diese wurde durch den Nernst-Effekt erklärt. Besonders interessant war, dass die Größe der Nernst-Spannung hierbei mit der Magnetisierung im (Ga,Mn)As verknüpft ist und somit ein aus der typischen Magnetisierungsumkehr hervorgehendes Verhalten zeigt.
Gegenüber den Magnetowiderstandseffekten entsteht beim Nernst-Effekt in sogenannten Fingerprints (vgl. Kapitel 1.3.3) ein dreistufiges Farbmuster anstelle eines zweistufigen hoch-tief-Systems. Die entstehende Temperatur im Heizkanal wird jeweils durch eine longitudinale Widerstandsmessung in einem senkrecht zum Kanal gerichteten äußeren Magnetfeld bestimmt. Die Magnetfeldabhängigkeit des Widerstands kommt hierbei durch den Effekt der schwachen Lokalisierung in dünnen Filmen zustande.
Zusammenfassend stellen die Magneto-Thermoelektrizitätseffekte eine wichtige weitere Transporteigenschaft in ferromagnetischen Halbleitern dar, die mit der Magnetisierung direkt zusammenhängen.
In dieser Arbeit wurden Thermospannungen an (Ga,Mn)As-Schichten mit vergleichsweise hoher
Mangankonzentration untersucht. Allerdings sind die Thermoelektrizitätseigenschaften zusammen mit Magneto-Widerstandsmessungen in Zukunft in der Lage, zusätzliche Informationen über die Bandstruktur sowie die Ladungsträgereigenschaften in Materialsystemen mit niedrigerem Mangangehalt, insbesondere in der Nähe des Metall-Isolator-Übergangs, zu liefern.
Inhalt des Anhangs ist eine ausführliche Anleitung zur Optimierung der Probenherstellung bzw.
der verschiedenen Bauelemente. / It is impossible to imagine our world without electronic devices which are getting smaller. The current ICs are, for example, from more than a billion transistors, each one smaller than 100 nm. It is undisputed that this trend following Moore’s law will continue. The interesting question in semiconductor- and nanostructure technology is: Is miniaturization of transistors with the current base achievable or is a new way needed?
With the continued miniaturization, the biggest challenge is to reduce the current used in These components in order to control the overheating in chips and to save energy. Today’s electronics have their origins in the 1960s. They, however, have reached their limitations with respect to efficiency and heat development. A main reason for problematic heat development are the electrical connections which transfer the information between semiconductor-based data processing und the metallic storage elements.
For a long time the charge of an electron was used for the processing of electrical Information and states. What would happen if we changed this approach? The spin of an electron is a much more effective information carrier than the electron’s charge. This is due to the fact that the change of the spin of an electron needs much less energy than its movement (...)
|
177 |
Investigation of low-temperature-grown GaAs photoconductive antennae for continuous-wave and pulsed terahertz generationLoata, Gabriel C. Unknown Date (has links) (PDF)
Frankfurt (Main), University, Diss., 2007.
|
178 |
Nachweis mesoskopischer elektrischer Inhomogenitäten in undotiertem GaAs mittels Punktkontakt-VerfahrenReichel, Carsten 09 July 2009 (has links) (PDF)
Zur Charakterisierung mesoskopischer elektrischer Inhomogenitäten in undotiertem GaAs, die meist eine zellulare Struktur mit hochohmigen Zellzentren und niederohmigen Zellwänden aufweisen, wurde die Punktkontakt-Technik weiterentwickelt, mit der hochaufgelöste und quantitative Widerstandsmessungen möglich sind. Untersuchungen der I-U-Kennlinie des Punktkontakts zeigten, dass sich letzterer näherungsweise durch einen Schottkykontakt mit hohem Serienwiderstand beschreiben lässt. Eine Kalibrierung des Punktkontakt-Stromes (IPC) lieferte für Widerstände > 1E6 Ohmcm eine inverse Proportionalität zwischen IPC und Widerstand. Messungen ergaben, dass die Widerstandsfluktuationen bei halbisolierenden Proben weniger als eine Größenordnung betragen. Dagegen wiesen Proben im hochohmigen Bereich (n = 1E10 cm^-3) Unterschiede im Widerstand von bis zu 3 Größenordnungen auf. Anhand temperaturabhängiger Punktkontaktmessungen konnte der experimentelle Beweis erbracht werden, dass der Widerstand hochohmiger Proben in den Zellwänden schon durch Sauerstoff bestimmt wird, während der Widerstand im Zellinneren noch durch EL2 bestimmt wird. Die anomale Verringerung der Hallbeweglichkeit in hochohmigen GaAs konnte eindeutig mit einer Erhöhung mesoskopischer elektrischer Inhomogenitäten korreliert werden.
|
179 |
Magnetic properties of transition metal surfaces and GaAs-Fe heterogeneous systemsKošuth, Michal January 2007 (has links)
Zugl.: München, Univ., Diss., 2007
|
180 |
Curie temperature and magnetic phase transition of nanostructured ultrathin Fe/GaAs(001) size dependence and relevance of dipolar couplingMeier, Roland January 2009 (has links)
Zugl.: Regensburg, Univ., Diss., 2009
|
Page generated in 0.0839 seconds