211 |
Thermo-physical properties and activity coefficients at infinite dilution for ionic liquid systems at several temperaturesSingh, Sangeeta January 2017 (has links)
Submitted in fulfillment of the requirements for the degree of Doctor of Technology: Chemistry, Durban University of Technology, Durban, South Africa, 2017. / The thermodynamic properties of mixtures involving ionic liquids (ILs) with organic acid (acetic acid or propanoic acid) or acetonitrile at different temperatures were determined. The ILs used were imidazolium-based: 1-ethyl-3-methylimidazolium ethyl sulphate [EMIM]+[EtSO4]-, 1-butyl- 3-methylimidazolium thiocyanate [BMIM]+[SCN]- and 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ([BMIM]+[Tf2N]-.
The ternary excess molar volume (V E
), isentropic compressibility (ks) and deviation in isentropic
compressibility ( ks123 ) were determined for four ternary liquid mixtures of {[EMIM]+[EtSO4]- or [BMIM]+[SCN]− + acetic or propionic acid + acetonitrile} at different temperatures (293.15, 298.15, 303.15, 308.15 and 313.15) K and at a pressure of 0.1 MPa with aid of the experimental density (ρ), speed of sound (u) data. The calculated data were correlated by using the Cibulka equation with the help of Redlich–Kister parameters obtained from fitting the Redlich–Kister equation for the corresponding binary systems.
Furthermore, the density and speed of sound were also measured for eight corresponding binary systems at the same experimental conditions. The binary excess molar volume, isentropic compressibility and deviation in isentropic compressibility were also calculated for measured systems and fitted to the Redlich–Kister equation to obtain the Redlich–Kister parameters as well as to check the accuracy of measured data which were used to correlated experimental data using Cibulka equation. These results were discussed, in terms of how the sign and magnitude of thermodynamic functions were influenced by the addition of a third component to liquid systems. Also, the possible molecular and pair-wise interactions between component molecules and the effect of temperature on the thermophysical and thermodynamic properties were predicted.
In addition, the work focussed on application of ([BMIM]+[Tf2N]-) ionic liquid for the separations of (alkane/aromatic), (alkane/alk-1-ene), (cycloalkane/aromatic) and (water/alkan-1-ol) using gas- liquid chromatography (GLC) technique. The activity coefficients at infinite dilution, , for 31 organic solutes (alkanes, cycloalkanes, alkenes, alkynes, aromatics, alkanol and ketones) and water in ionic liquid were measured at temperatures of (323.15, 333.15, 343.15, 353.15 and 363.15) K. Stationary phase loadings of (42.83 and 68.66) % by mass were used to ensure repeatability of
E ,
measurements. Partial molar excess enthalpies at infinite dilution,
H1
, were also determined.
The selectivities, S , and capacities, k , were determined for the above separations. The separating
ij j
ability of the investigated ionic liquid was compared with previously investigated ionic liquids and industrial solvents such as sulfolane, n-methyl-2-pyrrolidine (NMP) and n-formylmorpholine (NFM). The results obtained suggested that in general, the [BMIM]+[Tf2N]− had outperformed the conventional solvents such as sulfolane, NMP and NFM in terms of selectivity, while the [BMIM][Tf2N] had in general, performed better overall when the performance index was used for comparison. / D
|
212 |
Towards minimizing measurement uncertainty in total petroleum hydrocarbon determination by GC-FIDSaari, E. (Eija) 08 December 2009 (has links)
Abstract
Despite tightened environmental legislation, spillages of petroleum products remain a serious problem worldwide. The environmental impacts of these spillages are always severe and reliable methods for the identification and quantitative determination of petroleum hydrocarbons in environmental samples are therefore needed. Great improvements in the definition and analysis of total petroleum hydrocarbons (TPH) were finally introduced by international organizations for standardization in 2004. This brought some coherence to the determination and, nowadays, most laboratories seem to employ ISO/DIS 16703:2004, ISO 9377-2:2000 and CEN prEN 14039:2004:E draft international standards for analysing TPH in soil. The implementation of these methods, however, usually fails because the reliability of petroleum hydrocarbon determination has proved to be poor.
This thesis describes the assessment of measurement uncertainty for TPH determination in soil. Chemometric methods were used to both estimate the main uncertainty sources and identify the most significant factors affecting these uncertainty sources. The method used for the determinations was based on gas chromatography utilizing flame ionization detection (GC-FID).
Chemometric methodology applied in estimating measurement uncertainty for TPH determination showed that the measurement uncertainty is in actual fact dominated by the analytical uncertainty. Within the specific concentration range studied, the analytical uncertainty accounted for as much as 68–80% of the measurement uncertainty. The robustness of the analytical method used for petroleum hydrocarbon determination was then studied in more detail. A two-level Plackett-Burman design and a D-optimal design were utilized to assess the main analytical uncertainty sources of the sample treatment and GC determination procedures. It was also found that the matrix-induced systematic error may also significantly reduce the reliability of petroleum hydrocarbon determination.
The results showed that strict implementation of the ISO and CEN draft standards is necessary owing to the method dependence of the analyzed parameter. Care should be taken to ensure that the methods used for petroleum hydrocarbon determination are comprehensively validated, and that routine quality control is carried out in order to ensure that the validation conclusions are applicable in the daily work.
|
213 |
Bacterial degradation of the acaricide amitrazBaker, Penelope Bridget January 1976 (has links)
This thesis describes dip tank field trials and laboratory investigations on the acaricide Amitraz. Amitraz is a triazapenta- diene compound which is relatively unstable in fouled dip washes. The field trials were conducted on the farm Sea View according to the "Total Replacement Method" and on the farm Sea Ways according to the "Lime Stabilization Method" of dipping. The results of these trials showed that Amitraz was stable in clean dip washes, and under conditions of high pH resulting from the addition of slaked lime to the dip wash. Using mixed bacterial populations optimum conditions for degradation of Amitraz in the laboratory were determined. Bacterial cultures degraded Amitraz most efficiently in media supplemented with yeast extract or with a high content of sterile cattle faeces. Amitraz concentrations were determined by gas chromatography. A culture. efficient at degrading Amitraz was enriched from a dip tank sludge inoculum. From this culture ten bacterial isolates were identified; nine of these were of the genus Pseudomonas and one was an Achromobacter sp. Experiments with both mixed and pure cultures demonstrated that bacterial degradation of Amitraz was by the process of co-metabolism. The existence of four degradation products was shown using thin layer chromatography. Tentative identification of two of the products was made.
|
214 |
A gas chromatographic procedure to quantify volatile flavour-active sulphur compounds in beerDercksen, Arie W. 18 June 2014 (has links)
M.Tech. (Microbiology) / Please refer to full text to view abstract
|
215 |
Development and characterization of atmospheric pressure radio frequency capacitively coupled plasmas for analytical spectroscopyLiang, Dong Cuan January 1990 (has links)
An atmospheric pressure radio frequency capacitively coupled plasma (CCP) has been developed and characterized for applications in atomic emission spectrometry (AES), atomic absorption spectrometry (AAS) and gas chromatography (GC).
The CCP torch was initially designed as an atom reservoir for carrying out elemental analysis using atomic absorption. Functionally, the device consists of two parts, the CCP discharge tube and the tantalum strip electrothermal vaporization sample introduction system. The torch design provides for very effective energy transfer from the power supply to the plasma by capacitive coupling. Therefore, the plasma can be generated at atmospheric pressure with a flexible geometry. The plasma can be operated at very low rf input powers (30-600 W) enabling optimal conditions for atom resonance line absorption measurements. Absorption by the analyte takes place within the plasma discharge which is characterized by a long path length (20 cm) and low support gas flow rate (0.2 L/Min). Both of these characteristics ensure a relatively long residence time. The device exhibits linear calibration plots and provides sensitivities in the range of 3.5-40 pg. A preliminary measurement gave a Fe I excitation temperature of approximately 4000 K for the discharge. At this temperature, potential chemical interferences are likely to be minimal. Chemical interferences for Fe, Al, As, Ca, Co, Cd, Li, Mo and Sr were negligible in the determination of silver. Chloride interference, which is prevalent in GF-AAS, was not found. The amount of Ag found in a SMR#1643b (NIST) water sample was 9.5 ± 0.5 ng/g which fell in the certified range of 9.8 ± 0.8 ng/g. Spikes of 30 ng/g and 60 ng/g of silver were added to the SRM and recoveries were found to be in a range from 105 % to 96.2 %. The RSD obtained for 7 replicates of 270 pg silver was 4.6 %.
The results for the CCP AES are even more promising. The interferences of thirteen elements are negligible in the determination of silver. The chloride interference was not found. The detection limits for Ag, Cd, Li, Sb and B are 0.7, 0.7, 2, 80 and 400 pg respectively. The amount of silver found in a SRM#1643b (NIST) water sample was 9.3 ± 0.5 ng/g which also fell in the certified range of 9.8 ±0.8 ng/g. Spikes of 30 ng/g and 60 ng/g of silver were added into the SRM#1643b (NIST) samples; the recoveries were found to range from 97 % to 104 %. The RSD obtained for 7 analyses of 270 pg silver were 1.5 % for CCP-AES. It was also found that the signal to noise ratios (S/N) are higher in the AES mode than those in the AAS mode in the same CCP atomizer.
In order to exploit advantages inherent in both GF-AAS and I CP-AES, an atmospheric pressure capacitively coupled plasma sustained inside a graphite furnace was developed. This source combines the high efficiency of atomization in furnaces and the high efficiency of the excitation in atmospheric pressure plasmas. In general, plasma sources are able to effectively excite high-lying excited states for most metals and non-metals and can also ionize vaporized elements. Therefore the possibility exists of using non-resonance lines to avoid the effects of self-absorption at high analyte concentrations. Ion lines may also be used in cases where they provide better sensitivity or freedom from spectral interferences. This source also offers the ability to independently optimize vaporization and excitation. However, the most important aspect of this new source is that it can be used for simultaneous, multielement determinations of small sized samples in a graphite furnace atomizer, a design which has been proven to be effective over many years of use. Preliminary quantitative characteristics of this new atmospheric pressure plasma emission source have been studied. The detection limit for Ag of 0.3 pg is lower than the value of 0.4 pg reported for GF-AAS.
Variants of the CCP, including a gas chromatography (GC) detector, combinations of laser ablation - CCP, rf sputtering - CCP direct solid analysis, and its application as an intense spectral lamp have been developed and are reported in this dissertation. / Science, Faculty of / Chemistry, Department of / Graduate
|
216 |
Experimental Determination of L, Ostwald Solubility Solute Descriptor for Illegal Drugs By Gas Chromatography and Analysis By the Abraham ModelWang, Zhouxing 05 1900 (has links)
The experiment successfully established the mathematical correlations between the logarithm of retention time of illegal drugs with GC system and the solute descriptor L from the Abraham model. the experiment used the method of Gas Chromatography to analyze the samples of illegal drugs and obtain the retention time of each one. Using the Abraham model to calculate and analyze the sorption coefficient of illegal drugs is an effective way to estimate the drugs. Comparison of the experimental data and calculated data shows that the Abraham linear free energy relationship (LFER) model predicts retention behavior reasonably well for most compounds. It can calculate the solute descriptors of illegal drugs from the retention time of GC system. However, the illegal drugs chosen for this experiment were not all ideal for GC analysis. HPLC is the optimal instrument and will be used for future work. HPLC analysis of the illegal drug compounds will allow for the determination of all the solute descriptors allowing one to predict the illegal drugs behavior in various Abraham biological and medical equations. the results can be applied to predict the properties in biological and medical research which the data is difficult to measure. the Abraham model will predict more accurate results by increasing the samples with effective functional groups.
|
217 |
Zavedení metody stanovení konjugované linolové kyseliny (CLA) / Introduction of the method for assessment of conjugated linoleic acid (CLA)Ruprichová, Lenka January 2009 (has links)
This work deals with the optimization of the method for determination of conjugated linoleic acid (CLA) using gas chromatography. The summary about formation and occurrence of CLA in animal materials, its biological effects in human organism and methods suitable for its determination is introduced in the theoretical part of this study. The experimental part verify, if the gas chromatography is applicable method for assesment of CLA in selected biological matrices. The chosen method was introduced and verified at FCH of Brno university of technology. At the end the applicability of this method to CLA determination is discussed here.
|
218 |
Analysis of volatile organic compounds in water by sorptive extraction and gas chromatography - mass spectrometryHassett, Anthony John 30 July 2010 (has links)
Please read the abstract in the section 00front of this document / Dissertation (MSc)--University of Pretoria, 2010. / Chemistry / unrestricted
|
219 |
Automated derivatization and identification of controlled substances via total vaporization solid phase microextraction (Tv-Spme) and gas chromatography-mass spectrometry (Gc-Ms)Hickey, Logan D. January 2018 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Gas chromatography-mass spectrometry (GC-MS) is one of the most widely used instrumental techniques for chemical analyses in forensic science laboratories around the world due to its versatility and robustness. The most common type of chemical evidence submitted to forensic science laboratories is seized drug evidence, the analysis of which is largely dominated by GC-MS. Despite this, some drugs are difficult or impossible to analyze by GC-MS under normal circumstances. For these drugs, derivatization can be employed to make them more suitable for GC-MS.
In Chapter 1, the derivatization of primary amino and zwitterionic drugs with three different derivatization agents, trifluoroacetic anhydride (TFAA); N,O-bis(trimethylsilyl)trifluoroacetamide + 1% trimethylchlorosilane (BSTFA + 1% TMCS); and dimethylformamide dimethylacetal (DMF-DMA), is discussed. The chromatographic performance was quantified for comparison between the derivatives and their parent drugs. Peak symmetry was compared using the asymmetry factor (As), separation efficiency was measured by the number of theoretical plates (N), and sensitivity was compared by measuring the peak areas.
In Chapter 2, derivatization techniques were adapted for an automated on-fiber derivatization procedure using a technique called total vaporization solid phase microextraction (TV-SPME). TV-SPME is a variation of SPME in which a small volume of sample solution is used which can be totally vaporized, removing the need to consider the equilibrium between analytes in the solution and analytes in the headspace. By allowing derivatization agent to adsorb to the SPME fiber prior to introduction to the sample vial, the entire derivatization process can take place on the fiber or in the headspace surrounding it. The use of a robotic sampler made the derivatization procedure completely automated.
In Chapter 3, this on-fiber derivatization technique was tested on standards of 14 controlled substances as well as on realistic samples including simulated “street meth”, gamma-hydroxybutyric acid (GHB) in mixed drinks, and hallucinogenic mushrooms, and was also tested on several controlled substances as solid powders.
Future work in this area is discussed in Chapter 4, including adapting the method to toxicological analyses both in biological fluids and in hair. Some of the expected difficulties in doing so are discussed, including the endogenous nature of GHB in the human body. The presence of natural GHB in beverages is also discussed, which highlights the need for a quantitative addition to the method. Additional method improvements are also discussed, including proposed solutions for complete derivatization of more of the analytes, and for decreasing analysis time.
|
220 |
Urinary Volatile Organic Compounds for Detection of Breast Cancer and Monitoring Chemical and Mechanical Cancer Treatments in MiceTeli, Meghana 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The aim of this study is to identify metabolic transformations in breast cancer through urinary volatile organic compounds in mammary pad or bone tumor mice models. Subsequently, it focuses on investigating the efficacy of therapeutic intervention through identified potential biomarkers. Methods for monitoring tumor development and treatment responses have technologically advanced over the years leading to significant increase in percent survival rates. Although these modalities are reliable, it would be beneficial to observe disease progression from a new perspective to gain greater understanding of cancer pathogenesis. Analysis of cellular energetics affected by cancer using bio-fluids can non-invasively help in prognosis and selection of treatment regimens. The hypothesis is altered profiles of urinary volatile metabolites is directly related to disrupted metabolic pathways. Additionally, effectiveness of treatments can be indicated through changes in concentration of metabolites. In this ancillary experiment, mouse urine specimens were analyzed using gas chromatography-mass spectrometry, an analytical chemistry tool in identifying volatile organic compounds. Female BALB/c mice were injected with 4T1.2 murine breast tumor cells in the mammary fat pad. Consecutively, 4T1.2 cells were injected in the right iliac artery of BALB/c mice and E0771 tumor cells injected in the tibia of C57BL/6 mice to model bone tumor. The effect of two different modes of treatment: chemical drug and mechanical stimulation was investigated through changes in compound profiles. Chemical drug therapy was conducted with dopamine agents, Triuoperazine, Fluphenazine and a statin, Pitavastatin. Mechanical stimulation included tibia and knee loading at the site of tumor cell injection were given to mice. A biological treatment mode included administration of A5 osteocyte cell line. A set of potential volatile organic compounds biomarkers differentiating mammary pad or bone confined tumors from healthy controls was identified using forward feature selection. Effect of treatments was demonstrated through hierarchical heat maps and multivariate data analysis. Compounds identified in series of experiments belonged to the class of terpenoids, precursors of cholesterol molecules. Terpene synthesis is a descending step of mevalonate pathway suggesting its potential role in cancer pathogenesis. This thesis demonstrates the ability of urine volatilomics to indicate signaling pathways inflicted in tumors. It proposes a concept of using urine to detect tumor developments at two distinct locations as well as to monitor treatment efficacy.
|
Page generated in 0.1548 seconds