• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The refining of soda-lime-silica glasses with sodium sulphate

Huxley, Michael John January 1983 (has links)
No description available.
2

Screening and cleaning of pulp—a study to the parameters affecting separation

Jokinen, H. (Hanna) 05 June 2007 (has links)
Abstract The objective of this thesis was to determine the effects of design, operational and furnish quality parameters on pressure screen and hydrocyclone performance. The general contradictory interrelationships between capacity and selectivity in pressure screening and cleaning are commonly recognized, but deep understanding of the effects of design, operational and furnish quality parameters on the state of operation is missing. As separation selectivity is closely dependent on thickening and pulp passage, an operation curve for separation was applied and its application further developed to examine the parameters affecting pressure screen and hydrocyclone separation. New information was found on the geometry of the screen plate, furnish quality parameters in pressure screen fibre fractionation, and the hydrocyclone separation of fibres, sand and gases. The capacity increases achieved by changes in the wire screen plate geometry were found to be achieved at the cost of separation selectivity in probability screening. The capacity of the screen plate was affected by the flow on the screen plate and through it. The hydraulic resistance both in the forward and reverse flow directions was found to be of great importance for the capacity of the screen plate. Previously unreported knowledge was found regarding the effects of wire width, height and shape. Pressure screening capacity was found to decrease with increasing fibre length, fibre network strength and flocculation. Pressure screen fibre fractionation selectivity was increased by broadening of the fibre length distribution of the feed furnish. The furnish properties also affected the separation selectivity of fibres, sand and gases in the hydrocyclone. An increase in fibre network strength reduced the separation selectivity of the hydrocyclone separation of fibres and sand. Any increase in the specific surface area, and especially in the amount of fines, was found to make gas removal more challenging. It was concluded that a broader range of the specific surface distribution can increase the selectivity of fibre fractionation in the hydrocyclone. Knowledge of the general effects of design, operational and furnish quality parameters on the performance of pressure screen and hydrocyclone separation was deepened as a result of this work, which provides a framework for studying these effects further in pursuit of the general objective of maximizing capacity and selectivity while minimizing energy and investment costs.
3

Acid Gas Removal by Superhigh Silica ZSM-5: Adsorption Isotherms of Hydrogen Sulfide, Carbon Dioxide, Methane, and Nitrogen

Rahmani, M., Mokhtarani, B., Mafi, M., Rahmanian, Nejat 05 May 2022 (has links)
Yes / The adsorption of acid gas, including hydrogen sulfide and carbon dioxide, by superhigh silica ZSM-5 was investigated. Equilibrium adsorption isotherms of high-purity hydrogen sulfide and carbon dioxide were measured experimentally using this new sorbent. In addition, methane and nitrogen adsorption isotherms on this MFI-type zeolite were also measured as representative of other natural gas components. To enhance the reliability of the results, the adsorption pressure has been selected up to 20 bar at three different temperatures. Superhigh silica ZSM-5 for the adsorption of hydrogen sulfide shows an impressive result of 3.04 mmol·g–1 at 12 bar and 283 K. This value was 2.69 mmol·g–1 for carbon dioxide at 21 bar and 283 K. The adsorption capacity of H2S on the ZSM-5 is the highest, and N2 is the lowest; the order of the adsorption capacities of components is H2S > CO2 > CH4 > N2. The adsorption heat of different adsorbates is calculated: 13.7 and 29.5 kJ·mol–1 for H2S and CO2, respectively. Physical adsorption has occurred on high-silica ZSM-5, especially for hydrogen sulfide, and this is a great advantage. By increasing the temperature, the adsorption capacity of components on the ZSM-5 decreases, but due to differences in the adsorption heat of the adsorbate, the ideal selectivity for hydrogen sulfide increases. There is a challenge in the choice of the best condition for H2S removal, as, by increasing the temperature, the adsorption capacity of hydrogen sulfide reduces, but the selectivity of the hydrogen sulfide increases as compared to other gases. This phenomenon is not true for the selectivity of other components.
4

Air in pulp and papermaking processes

Stoor, T. (Tuomas) 10 May 2006 (has links)
Abstract A pulp suspension consists of water, fibres, fines, fillers and chemicals, but air or other gases are also present in practically all pulping processes either in dissolved form or as bubbles. Dissolved gases seldom disturb the processes, but they are readily converted to gaseous form when conditions change. The gas bubbles affect the properties of the pulp suspension, reduce the accuracy of certain measurements, interfere with the runability of the papermachine and detract from the quality of the end-product. Gases are removed from the process by either mechanical or chemical means, resulting in increased investments and operational costs. The aim of this work was to study the behaviour of gas in pulp and papermaking processes with laboratory, pilot-scale and mill-scale experiments. Five main areas of the research can be identified: 1. Occurrence of gases in pulp and paper mill processes, 2. Dissolution, precipitation and hold-up of gases in the pulp suspension and mill water, 3. Effects of gases on certain consistency measurements, centrifugal pumping and operation of the hydrocyclone. 4. Measurement of the gas content of the pulp suspension by compression, radiometric, microwave and sonar methods and 5. Removal of gases with a centrifugal pump equipped with vacuum pump or hydrocyclone equipped light reject removal. The results show that the dissolution and precipitation of gas is strongly dependent on the pulp and water properties. Dissolved and colloidal material reduces the solubility potential of gas, but also accelerates the precipitation of dissolved gases in gaseous form. The hold-up of precipitated gas bubbles was found to be much more pronounced in hydrophobic mechanical pulps than in lignin-free chemical pulps. The accuracy of consistency measurements was affected by free gas in the pulp suspension, requiring special attention when assessing the results. The operation of pressure screens and hydrocyclones was affected only at high volumes of free gas in the feed suspension. According to the experiments, a reliable gas content measurement can be achieved by in-line radiometric, microwave or sonar methods, and also by the off-line compression method if a representative sample is obtained. A centrifugal pump equipped with a gas removing unit is designed mainly to ensure undisturbed pumping, whereas its gas removal efficiency remains quite low, especially with small bubbles and at a low gas content. The gas removal efficiency of a hydrocyclone equipped with light reject removal is good, but decreases with small precipitated bubbles. These results offer new information of the behaviour of the gas in pulp suspensions and white water and underline the importance of the bubble generation mechanism in this context.
5

Advanced modeling and simulation of integrated gasification combined cycle power plants with CO2-capture / Fortgeschrittene Modellierung und Simulation von GuD-Kraftwerken mit integrierter Kohlevergasung und CO2-Abtrennung

Rieger, Mathias 14 August 2014 (has links) (PDF)
The objective of this thesis is to provide an extensive description of the correlations in some of the most crucial sub-processes for hard coal fired IGCC with carbon capture (CC-IGCC). For this purpose, process simulation models are developed for four industrial gasification processes, the CO-shift cycle, the acid gas removal unit, the sulfur recovery process, the gas turbine, the water-/steam cycle and the air separation unit (ASU). Process simulations clarify the influence of certain boundary conditions on plant operation, performance and economics. Based on that, a comparative benchmark of CC-IGCC concepts is conducted. Furthermore, the influence of integration between the gas turbine and the ASU is analyzed in detail. The generated findings are used to develop an advanced plant configuration with improved economics. Nevertheless, IGCC power plants with carbon capture are not found to be an economically efficient power generation technology at present day boundary conditions.
6

Advanced modeling and simulation of integrated gasification combined cycle power plants with CO2-capture

Rieger, Mathias 17 April 2014 (has links)
The objective of this thesis is to provide an extensive description of the correlations in some of the most crucial sub-processes for hard coal fired IGCC with carbon capture (CC-IGCC). For this purpose, process simulation models are developed for four industrial gasification processes, the CO-shift cycle, the acid gas removal unit, the sulfur recovery process, the gas turbine, the water-/steam cycle and the air separation unit (ASU). Process simulations clarify the influence of certain boundary conditions on plant operation, performance and economics. Based on that, a comparative benchmark of CC-IGCC concepts is conducted. Furthermore, the influence of integration between the gas turbine and the ASU is analyzed in detail. The generated findings are used to develop an advanced plant configuration with improved economics. Nevertheless, IGCC power plants with carbon capture are not found to be an economically efficient power generation technology at present day boundary conditions.

Page generated in 0.0734 seconds