• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 134
  • 21
  • 11
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 240
  • 240
  • 122
  • 108
  • 53
  • 38
  • 37
  • 33
  • 33
  • 28
  • 25
  • 25
  • 25
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Advanced Polymeric Membranes and Multi-Layered Films for Gas Separation and Capacitors

Shaver, Andrew Thomas 30 June 2016 (has links)
The following studies describe the synthesis and properties of a family of poly(arylene ether ketone)s which are well known to have good thermal stability, mechanical durability, and other film properties. These poly(arylene ether ketone)s were functionalized with fluorine, oxidized, blended, and crosslinked to increase performance with focus on materials for polymeric capacitors and gas separation membranes. There is a need for polymeric capacitors with improved energy storage density and thermal stability. In this work, the affect of polymer molecular structure and symmetry on Tg, breakdown strength, and relative permittivity was investigated. A systematic series of four amorphous poly(arylene ether ketone)s was compared. Two of the polymers had symmetric bisphenols while the remaining two had asymmetric bisphenols. Two contained trifluoromethyl groups while the other two had methyl groups. The symmetric polymers had Tg's of approximately 160 °C while the asymmetric polymers showed higher Tg's near 180 °C. The symmetric polymers had breakdown strengths near 380 kV/mm at 150 °C. The asymmetric counterparts had breakdown strengths near 520 kV/mm even at 175 °C, with the fluorinated polymers performing slightly better in both cases. The non-fluorinated polymers had higher relative permittivities than the fluorinated materials, with the asymmetric polymers being better in both cases. Two amorphous, high glass transition, crosslinkable poly(arylene ether)s for gas purification membranes have been studied. The polymers were polymerized via step growth and contained tetramethyl bisphenol F and either 4,4'-difluorobenzophenone or 4,4'-dichlorodiphenylsulfone. The benzylic methylene group in tetramethyl bisphenol F can undergo oxidation reactions and crosslinking with UV light. The polymers were oxidized under two different conditions, one by chemical treatment using oxone and KBr and one by elevated thermal treatment in air. Thermogravimetric analysis, 1H-NMR and attenuated total reflectance Fourier transform infrared spectroscopy revealed the progress of the thermal oxidation reactions. Both polymers produced tough, ductile films and gas transport properties of the non-crosslinked linear polymers and crosslinked polymer was compared. Crosslinking was performed by irradiating polymer films for one hour on each side in air under a 100W high intensity, long-wave UV lamp equipped with a 365-nm light filter. The O2 permeability of tetramethyl bisphenol F containing non-crosslinked poly(arylene ether ketone) was 2.8 Barrer, with an O2/N2 selectivity of 5.4. Following UV crosslinking, the O2 permeability decreased to 1.8 Barrer, and the O2/N2 selectivity increased to 6.2. Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) is a commercial polymer that is utilized for gas separation membranes. It has a relatively high free volume with high gas permeabilities but suffers from low gas selectivities. In this study, PPO polymers with number average molecular weights of 2000, 6000, 17,000, 19,000 and 22,000 were synthesized and blended with a poly(arylene ether ketone) synthesized from bisphenol A and difluorobenzophenone (BPA-PAEK) to make UV-crosslinkable films. The ketone and benzylic methylene groups on the BPA-PAEK and the PPO polymers respectively formed crosslinks upon exposure to broad wavelength UV light. The crosslinked blends had increased selectivities over their linear counterparts. DSC thermograms showed that the blends with all but the lowest molecular weight PPO had two Tg's, thus suggesting that two phases were present, one high in PBA-PAEK and the other high in PPO composition. The PBA-PAEK blend with the 2000 Mn PPO showed only one Tg between the two control polymers. Despite the immiscibility of these films, the gel fractions after UV exposure were high. Gel fractions as a function of the amount of the 22,000 Mn PPO were explored and did not show any significant change. UV spectroscopy of the individual components and the blends showed that more broad wavelength light was transmitted through the PPO component, so it was reasoned that films that was high in PPO composition crosslinked to deeper depths. The O2/N2 permeabilities and selectivities were measured for the linear and crosslinked films. Between the 33/67, 67/33, and 90/10 22k PPO/BPA PAEK crosslinked blended films, the 90/10 PPO/BPA PAEK gained the most selectivity and maintained a larger amount of its permeability. In comparison to commercial gas separation polymers, the non-crosslinked 33/67 22,000 Mn PPO/BPA PAEK blend outperformed polysulfone and cellulose acetate with a 2.45 degree of acetylation. Overall, we were able to blend a small amount of BPA PAEK with the commercially used PPO to create a mechanically robust crosslinked polymer film. / Ph. D.
192

Synthesis and Characterization of High Performance Polymers for Gas Separation and Water Purification Membranes and as Interfacial Agents for Thermplastic Carbon Fiber Composites

Joseph, Ronald Matthew 03 July 2018 (has links)
This dissertation focuses on the synthesis and characterization of high performance polymers, specifically polybenzimidazoles (PBIs) for gas separation applications and polyimides (PI) for water purification and as interfacial agents for thermoplastic carbon fiber composites. Two methods for improving the gas transport properties (for H2/CO2 separation) of a tetraaminodiphenylsulfone (TADPS)-based polybenzimidazole were investigated. Low molecular weight poly(propylene carbonate) (PPC) and poly(ethylene oxide) (PEO) were incorporated as sacrificial additives that could be removed via a controlled heat treatment protocol. PBI films containing 7 and 11 wt% PPC (blend) and 13 wt% PEO (graft) were fabricated and the gas transport properties and mechanical properties after heat treatment were measured and compared to the PBI homopolymer. After heat treatment, the 7 wt% PPC blend exhibited the highest performance while retaining the toughness exhibited by the PBI homopolymer. Novel sulfonated polyimides and their monomers were synthesized for use as interfacial agents and water purification membranes. Polyimides are high performance polymers that have high thermal, mechanical, and chemical stability. The objective was to assess structure-property relationships of novel sulfonated polyimides prepared by direct polymerization of the diamine monomers. A series of sulfonated polyimides was synthesized using an ester-acid polymerization method with varying degrees of sulfonation (20%, 30%, and 50% disulfonated and 50% and 100% monosulfonated polyimides). The results showed that the toughness of the polyimides in the fully hydrated state was much better than current commercial cation exchange membranes. A 100% disulfonated polyimide (sPI) and poly(amic acid) salt (PAAS) using the same monomers used for the synthesis of Ultem® were utilized as suspending agents for the fabrication of coated sub-micron polyetherimide (PEI) particles. Sub-micron particles were obtained using 1 wt% PAAS and 4 wt% sPI to coat the PEI. The PEI particles were coupled onto ozone treated carbon fibers using a silane coupling agent. SEM images showed a significant amount of particle coating on the treated carbon fibers compared to the non-silane treated carbon fibers. / PHD
193

Shear-induced microstructure in hollow fiber membrane dopes

Peterson, Emily Cassidy 13 January 2014 (has links)
Hollow fiber membranes offer the opportunity to dramatically reduce the energy required to perform gas separations in the chemical industry. The membranes are fabricated from highly non-Newtonian precursor materials, including concentrated polymer solutions that sometimes also contain dispersed particles. These materials are susceptible to shear-induced microstructural changes during processing, which can affect the characteristics of the resulting membrane. This thesis explores several shear-related effects using materials and flow conditions that are relevant for fiber spinning. The findings are discussed as they relate to membrane processing, and also from the standpoint of enhancing our fundamental understanding of the underlying phenomena. First, the effect of shear on polymeric dope solutions was investigated. Shear-induced demixing—a phenomenon not previously studied in membrane materials—was found to occur in membrane dopes. Phase separation experiments also showed that shear-induced demixing promotes macrovoid formation. The demixing process was found to depend not only on the instantaneous shear conditions, but also on the shear history of the solution. This suggests that low-shear flow processes that occur in the upstream tubing and channels used for fiber spinning can affect macrovoid formation. The effect of viscoelastic media on dispersed particles was also explored. Shear-small-angle light scattering results showed that particles suspended in membrane dope solutions formed aggregated, vorticity-oriented structures when shear rates in the shear-thinning regime of the polymer solution were applied. Shear rates well below the shear-thinning regime did not produce any structure. In fact, the application of a Newtonian shear rate to a sample already containing the vorticity structure caused the sample to return to isotropy. Measurements using a highly elastic, constant-viscosity Boger fluid showed that strong normal forces alone are not sufficient to form the vorticity structures, but that shear thinning is also required. Lastly, a study was conducted examining cross-stream migration of particles dispersed in viscoelastic media. Fluids exhibiting varying degrees of shear thinning and normal forces were found to have different effects on the particle distribution along the shear gradient axis in Poiseuille flow. Shear thinning was found to promote migration toward the channel center, while normal stresses tended to cause migration toward the channel walls. In addition to hollow fiber spinning, many other industrially relevant applications involve polymer solutions and suspensions of particles in viscoelastic media. Often, the properties and performance of the material depend strongly on the internal microstructure. The results from the research described in this thesis can be used to guide the design of materials and processing conditions, so that the desired microstructural characteristics can be achieved.
194

Control of Pore Structure in Plasma-Polymerized SiOCH Films for Gas Separation / Contrôle de la porosité dans les films SiOCH de polymère-plasma pour la séparation gazeuse

Lo, Chia-Hao 19 July 2010 (has links)
La synthèse d'une membrane composite formée d'une couche fine de surface de structure très réticulée et permsélective aux gaz déposée sur un substrat poreux a été étudiée comme solution pour accroître la perméabilité aux gaz tout en conservant une sélectivité importante. Une couche mince de polymère-plasma SiOCH a été retenue comme membrane de séparation gazeuse car elle possède une structure dont l'ultramicroporisté peut être contrôlée en ajustant les paramètres du procédé plasma comme la puissance, le flux de monomère et la pression de travail. Néanmoins, dans la membrane SiOCH, la taille moyenne des pores et leur distribution sont difficiles à appréhender par des techniques de caractérisation classiques, notamment proche de la surface car elle est très fine. Ce mémoire de thèse concerne le contrôle de la structure poreuse dans une couche mince de polymère-plasma SiOCH déposée sur un substrat polymère en utilisant un précurseur organosilicié. La spectroscopie d'annihilation de positron couplée à un faisceau de positron lent a été utilisée pour identifier la microstructure de couches minces SiOCH avec la profondeur. Ceci a nécessité tout d'abord l'acquisition d'une bonne connaissance de la caractérisation de l'annihilation de positron de matériaux polymères et céramiques. Des couches minces de SiOCH conformes ou superhydrophobes (SHP) ont été obtenues à deux fréquences différentes, respectivement à 13,56 MHz ou 40 kHz. Pour une couche conforme, le type de substrat, la structure chimique du précurseur et la puissance RF sont les paramètres majeurs qui influencent la structure des pores. Quand les films de SiOCH sont composées de deux couches (couche uniforme de surface et couche de transition) déposées sur un substrat poreux, l'analyse PAS met en évidence une couche de transition large et l'ensemble possède une perméabilité aux gaz élevée grâce à la porosité de surface du support. Lors de la préparation des couches minces SHP, quand la pression totale dépasse 0,6 mbar, la nucléation en phase gaz apparaît ce qui augmente la rugosité de la surface. Ceci induit des angles de contact à l'eau supérieurs à 160° et une hystérésis d'angles de contact avancée-reculée de seulement 2°. La préservation des chaînes carbonées et la microstructure sont les facteurs déterminant pour accroître l'hydrophobicité des couches minces de SiOCH. / In gas separation, the fabrication of composite membranes consisting of a permselective thin top layer with high cross-linking structures and a porous substrate has been regarded as a solution for improving gas permeability and simultaneously retaining high selectivity. A plasma-polymerized SiOCH film has been known as an appropriate gas separation membrane because it possesses a dense structure, the crosslinking degree of which could be controlled by adjusting plasma parameters such as plasma power, monomer flow rate, and system pressure. However, the pore size and distribution in SiOCH films, especially in the region of depth profile, are difficult to measure by conventional techniques because of they are very thin.This thesis is concerned with the control of pore structure in a plasma-polymerized SiOCH film on a polymeric substrate by using an organosilicon source. The positron annihilation spectroscopy (PAS) coupled to the slow positron beam technique was used to identify the microstructure of SiOCH films as a function of depth. This step required to have a good understanding of the positron annihilation characteristics of different materials such as organic, inorganic, and hybrid materials. Depending on plasma frequency adjustments, SiOCH films with a flat and a superhydrophobic (SHP) surface were fabricated at 13.56 MHz and 40 kHz, respectively. For a flat SiOCH film, substrate type, chemical structure of precursor, and RF power were the major variables that influenced the pore structure. When SiOCH films composed of two layers (bulk and transitions layers) were deposited on porous substrates, they displayed a long transition layer based on the PAS analysis and possessed a high gas permeability due to the surface porosity of the substrate. When the precursor used possessed a cyclic ring structure, an opportunity of a break-up of the cyclic ring would increase with increasing RF power and then induce formation of new big pores. For the preparation of SHP films, when the total pressure was higher than 0.6 mbar, the gas nucleation reaction was enhanced to induce roughness on SiOCH films, and it would show a high WCA of over 160o and a low WCAH of only 2 degrees. Both the hydrocarbon preservation and microstructure were the main factors in improving the surface superhydrophobicity of SiOCH films.
195

Impact of Post-Synthesis Modification of Nanoporous Organic Frameworks on Selective Carbon Dioxide Capture

İslamoğlu, Timur 10 December 2012 (has links)
Porous organic polymers containing nitrogen-rich building units are among the most promising materials for selective CO2 capture and separation applications that impact the environment and the quality of methane and hydrogen fuels. The work described herein describes post-synthesis modification of Nanoporous Organic Frameworks (NPOFs) and its impact on gas storage and selective CO2 capture. The synthesis of NPOF-4 was accomplished via a catalysed cyclotrimerization reaction of 1,3,5,7-tetrakis(4-acetylphenyl)adamantane in Ethanol/Xylenes mixture using SiCl4 as a catalyst. NPOF-4 is microporous and has high surface area (SABET = 1249 m2 g-1). Post-synthesis modification of NPOF-4 by nitration afforded (NPOF-4-NO2) and subsequent reduction resulted in an amine-functionalized framework (NPOF-4-NH2) that exhibits improved gas storage capacities and high CO2/N2 (139) and CO2/CH4 (15) selectivities compared to NPOF-4 under ambient conditions. These results demonstrate the impact of nitro- and amine- pore decoration on the function of porous organic materials in gas storage and separation application.
196

DESIGNED SYNTHESIS OF NANOPOROUS ORGANIC POLYMERS FOR SELECTIVE GAS UPTAKE AND CATALYTIC APPLICATIONS

Arab, Pezhman 01 January 2015 (has links)
Design and synthesis of porous organic polymers have attracted considerable attentions during the past decade due to their wide range of applications in gas storage, gas separation, energy conversion, and catalysis. Porous organic polymers can be pre-synthetically and post-synthetically functionalized with a wide variety of functionalities for desirable applications. Along these pursuits, we introduced new synthetic strategies for preparation of porous organic polymers for selective CO2 capture. Porous azo-linked polymers (ALPs) were synthesized by an oxidative reaction of amine-based monomers using copper(I) as a catalyst which leads to azo-linkage formation. ALPs exhibit high surface areas of up to 1200 m2 g-1 and have high chemical and thermal stabilities. The nitrogen atoms of the azo group can act as Lewis bases and the carbon atom of CO2 can act as a Lewis acid. Therefore, ALPs show high CO2 uptake capacities due to this Lewis acid-based interaction. The potential applications of ALPs for selective CO2 capture from flue gas, natural gas, and landfill gas under pressure-swing and vacuum swing separation settings were studied. Due to their high CO2 uptake capacity, selectivity, regenerability, and working capacity, ALPs are among the best porous organic frameworks for selective CO2 capture. In our second project, a new bis(imino)pyridine-linked porous polymer (BIPLP-1) was synthesized and post-synthetically functionalized with Cu(BF4)2 for highly selective CO2 capture. BIPLP-1 was synthesized via a condensation reaction between 2,6-pyridinedicarboxaldehyde and 1,3,5-tris(4-aminophenyl)benzene, wherein the bis(imino)pyridine linkages are formed in-situ during polymerization. The functionalization of the polymer with Cu(BF4)2 was achieved by treatment of the polymer with a solution of Cu(BF4)2 via complexation of copper cations with bis(imino)pyridine moieties of the polymer. BF4- ions can act Lewis base and CO2 can act as a Lewis acid; and therefore, the functionalized polymer shows high binding affinity for CO2 due to this Lewis acid-based interaction. The functionalization of the pores with Cu(BF4)2 resulted in a significant enhancement in CO2 binding energy, CO2 uptake capacity, and CO2 selectivity values. Due to high reactivity of bis(imino)pyridines toward transitions metals, BIPLP-1 can be post-synthetically functionalized with a wide variety of inorganic species for CO2 separation and catalytic applications.
197

Bio(molecular) control of selective ion transport, gas separation and catalytic enzyme-based reactions using functionalized membranes / Contrôle bio-moléculaire du transport sélectif d’ions, de la séparation de gaz et de réactions catalytiques enzymatiques grâce aux membranes fonctionnalisées

Yahia Marei Abdelrahim, Mohamed 21 December 2015 (has links)
Différents travaux de recherche ont été décrits dans cette thèse. Les travaux de recherche peuvent être résumés comme suit. Le premier chapitre a porté sur l'identification d’inhibiteurs puissants efficaces vis-à-vis de de l'isoenzyme anhydrase carbonique humaine I (hCAI). Considérant l'importance pharmacologique de trouver des inhibiteurs (CAIs) et des activateurs (AACs) sélectifs aux isoformes de l’anhydrase carbonique ), l'anhydrase carbonique humaine I (hCAI) a été confrontée en parallèle à diverses bibliothèques dynamiques constitutionnelles (CDL). Dans le deuxième chapitre, des réseaux constitutionnels dynamiques ont été préparés sous forme de systèmes membranaires liquides et solides agissant comme un réseau pour le transport spécifique des ions lanthanides. Le transport est basé sur la capacité de complexation des lanthanides (La + 3, Lu + 3, Eu + 3) avec les groupes polyéther fonctionnels situés dans les matériaux membranaires. Dans le troisième chapitre, l'approche proposée consiste en l'utilisation de membranes liquides ioniques supportées (SILMs) comprenant deux enzymes différentes de l'anhydrase carbonique, l’enzyme thermo-résistante SspCA et l'enzyme bovine-CA, qui catalysent la réaction de conversion réversible du CO2 en bicarbonate en favorisant la force motrice vers le transport de CO2. La stabilité des membrane, leur perméabilité vis-à-vis de CO2 et de N2 ainsi que la sélectivité idéale (CO2 / N2) ont été déterminées pour les membranes développées. Le quatrième chapitre porte sur la synthèse et la caractérisation de membranes polymères denses pour une application en séparation de gaz. Les mesures de perméabilité aux gaz des membranes polymères synthétisées ont montré que la perméabilité de CO2 est supérieure à celle des autres gaz testés (CH4 et N2). Dans le dernier chapitre, des membranes de PVDF ont été fonctionnalisées avec une enzyme, la phosphotriestérase (PTE), selon deux méthodes différentes pour construire un réacteur à membrane biocatalytique (BMR) avec pour finalité la bioconversion et la séparation sélective du substrat paraoxon. La première méthode met en œuvre une dispersion réversible de nanoparticules magnétiques de PTE qui est immobilisée à la surface de la membrane de PVDF sous l’effet d'un champ magnétique externe. A l’inverse, la seconde méthode porte sur le greffage chimique de l'enzyme PTE, après modification de la surface de la membrane de PVDF native (DAMP-GA-enzymatique). Les deux techniques d'immobilisation d'enzymes ont montré une bonne efficacité et une sensibilité à l'égard de la bioconversion du paraoxon dans les différentes conditions appliquées dans un réacteur à membrane biocatalytique (BMR).De façon globale, les concepts développés dans ce travail de thèse permettront d’ouvrir de nouvelles pistes de recherche allant vers le développement d'une membrane polymère sélective au transport d’ions, de gaz mais aussi active dans les réactions catalytiques enzymatiques grâce à un contrôle bio-moléculaire au niveau des matériaux membranaires. / Different research works have been described in this thesis. The research works can be summarized as the following. The first chapter deals with the identification of effective potent inhibitors for the human carbonic anhydrase I (hCAI) isozyme. Considering the pharmacological importance to find selective CA inhibitors (CAIs) and CA activators (CAAs), human carbonic anhydrase I (hCAI) has been subjected to a parallel screening of various constitutional dynamic libraries (CDL). In the second chapter, constitutional dynamic networks have been used in liquid and solid membrane systems as a carrier network for transporting lanthanides. The transport is based on the complexing ability of lanthanides metals (La+3, Lu+3, and Eu+3) with the functional polyether groups in the membrane materials. In the third chapter, the proposed approach consists in using supported ionic liquid membranes (SILMs) comprising two different carbonic anhydrase enzymes, the thermo-resistant SspCA enzyme and the Bovine-CA enzyme, which catalyze the reaction of reversible conversion of CO2 to bicarbonate, enhancing the driving force for CO2 transport. Membrane stability, CO2 and N2 permeability and (CO2/N2) ideal selectivity were determined for the membranes developed. In the fourth chapter, the research work consists in the synthesis and characterization of dense polymeric membranes for gas separation application. The gas permeability measurements for the synthesized polymeric membranes showed that the permeability of CO2 is higher than other used gases (N2 and CH4). In the last chapter, two different methods of PVDF membrane functionalization with a phosphotriesterase (PTE) enzyme have been developed to construct biocatalytic membrane reactor (BMR) for bioconversion and selective separation of paraoxon substrate. The first method employs reversible dispersion of magnetic nanoparticle immobilized with PTE using an external magnetic field on the surface of native PVDF membrane. On the contrary, the second method comprises chemical grafting of the PTE enzyme, after surface modification of the native PVDF membrane (DAMP-GA-Enzyme). Both methods of enzyme immobilization showed good efficiency and sensitivity towards the bioconversion of paraoxon substrate at different conditions applied in a biocatalytic membrane reactor (BMR).In general, the concepts developed in this thesis research work will help bring new tracks on the way to the development of a polymeric membrane for selective ion and gas separation but also for selective catalytic reaction under bio(molecular) control.
198

Control of water and toxic gas adsorption in metal-organic frameworks

McPherson, Matthew Joseph January 2016 (has links)
The research presented in this thesis aims to determine the effectiveness of the uptake of toxic gases by several MOFs for future use in gas-mask cartridges, and to attempt to compensate for any deficiencies they show in “real-world” conditions. The main findings of this thesis confirm that MOFs are suitable candidates for the use in respirator cartridge materials and provide high capacity for adsorption of toxic gases like ammonia and STAM-1 in particular showed an impressive improvement in humid conditions, which normally decrease the performance of MOFs made from the same materials, such as HKUST-1. STAM-1's improved performance in humid conditions is attributed to the structural shift it displays upon dehydration and rehydration and this was shown to be the case in a structural analogue, CuEtOip, which was synthesised in the author's research group. This analogue was analysed using a combination of single crystal XRD and solid state MAS-NMR, both of which showed the structural change occurring and displays similar gas sorption behaviours, suggesting that this mechanism is the source of STAM-1's improved performance in humid conditions. This thesis also examines the “Armoured MOF” process and investigates the transferability of the process of deposition of mesoporous silica onto MOFs with vastly different properties and synthetic methods compared to those published in the original publication. Alongside this, attempts to protect MOFs using mesoporous silicates were investigated for their viability.
199

PEBAX-based mixed matrix membranes for post-combustion carbon capture

Bryan, Nicholas James January 2018 (has links)
Polymeric membranes exhibit a trade-off between permeability and selectivity in gas separations which limits their viability as an economically feasible post-combustion carbon capture technology. One approach to improve the separation properties of polymeric membranes is the inclusion of particulate materials into the polymer matrix to create what are known as mixed matrix membranes (MMMs). By combining the polymer and particulate phases, beneficial properties of both can be seen in the resulting composite material. One of the most notable challenges in producing mixed matrix membranes is in the formation of performance-hindering defects at the polymer-filler interface. Non-selective voids or polymer chain rigidification are but two non-desirable effects which can be observed. The material selection and synthesis route are key to minimising these defects. Thin membranes are also highly desirable to achieve greater gas fluxes and improved economical separation processes. Hence smaller nano-sized particles are of particular interest to minimise the disruption to the polymer matrix. This is a challenge due to the tendency of some small particles to form agglomerations. This work involved introducing novel nanoscale filler particles into PEBAX MH1657, a commercially available block-copolymer consisting of poly(ethylene oxide) and nylon 6 chains. Poly(ether-b-amide) materials possess an inherently high selectivity for the CO2/N2 separation due to polar groups in the PEO chain but suffer from low permeabilities. Mixed matrix membranes were fabricated with PEBAX MH1657 primarily using two filler particles, nanoscale ZIF-8 and novel nanoscale MCM-41 hollow spheres. This work primarily investigated the effects of the filler loading on both the morphology and gas transport properties of the composite materials. The internal structure of the membranes was examined using scanning electron microscopy (SEM), and the gas transport properties determined using a bespoke time-lag gas permeation apparatus. ZIF-8 is a zeolitic imidazolate framework which possesses small pore windows that may favour CO2 transport over that of N2. ZIF-8-PEBAX membranes were successfully synthesised up to 7wt.%. It was found that for filler loadings below 5wt.%, the ZIF-8 was well dispersed within the polymer phase. At these loadings modest increases in the CO2 permeability coeffcient of 0-20% compared to neat PEBAX were observed. Above this 5wt.% loading large increases in both CO2, N2 and He permeability coeffcients coincided with the presence of large micron size clusters formed of hundreds of filler ZIF-8 particles. The increases in permeability were attributed to voids observed within the clusters. MCM-41 is a metal organic framework that has seen notable interest in the field of carbon capture, due to its tunable pore size and ease of functionalisation. Two types of novel MCM-41 hollow sphere (MCM-41-HS) of varying pore size were incorporated into PEBAX and successfully used to fabricate MMMs up to 10wt.%. SEM showed the MCM-41 generally interacted well with the polymer with no signs of voids and was generally well dispersed. However, some samples of intermediate loading in both cases showed highly asymmetric distribution of nanoparticles and high particle density regions near one external face of the membrane which also showed the highest CO2 permeability coeffcients. It is suspected that these high permeabilities are due to the close proximity of nanoparticles permitting these regions to act in a similar way to percolating networks. It was determined that there was no observable effect of the varying pore size which was expected given the transport in the pores should be governed by Knudsen diffusion.
200

Simulation, Design and Optimization of Membrane Gas Separation, Chemical Absorption and Hybrid Processes for CO2 Capture

Chowdhury, Mohammad Hassan Murad 14 December 2011 (has links)
Coal-fired power plants are the largest anthropogenic point sources of CO2 emissions worldwide. About 40% of the world's electricity comes from coal. Approximately 49% of the US electricity in 2008 and 23% of the total electricity generation of Canada in 2000 came from coal-fired power plant (World Coal Association, and Statistic Canada). It is likely that in the near future there might be some form of CO2 regulation. Therefore, it is highly probable that CO2 capture will need to be implemented at many US and Canadian coal fired power plants at some point. Several technologies are available for CO2 capture from coal-fired power plants. One option is to separate CO2 from the combustion products using conventional approach such as chemical absorption/stripping with amine solvents, which is commercially available. Another potential alternative, membrane gas separation, involves no moving parts, is compact and modular with a small footprint, is gaining more and more attention. Both technologies can be retrofitted to existing power plants, but they demands significant energy requirement to capture, purify and compress the CO2 for transporting to the sequestration sites. This thesis is a techno-economical evaluation of the two approaches mentioned above along with another approach known as hybrid. This evaluation is based on the recent advancement in membrane materials and properties, and the adoption of systemic design procedures and optimization approach with the help of a commercial process simulator. Comparison of the process performance is developed in AspenPlus process simulation environment with a detailed multicomponent gas separation membrane model, and several rigorous rate-based absorption/stripping models. Fifteen various single and multi-stage membrane process configurations with or without recycle streams are examined through simulation and design study for industrial scale post-combustion CO2 capture. It is found that only two process configurations are capable to satisfy the process specifications i.e., 85% CO2 recovery and 98% CO2 purity for EOR. The power and membrane area requirement can be saved by up to 13% and 8% respectively by the optimizing the base design. A post-optimality sensitivity analysis reveals that any changes in any of the factors such as feed flow rate, feed concentration (CO2), permeate vacuum and compression condition have great impact on plant performance especially on power consumption and product recovery. Two different absorption/stripping process configurations (conventional and Fluor concept) with monoethanolamine (30 wt% MEA) solvent were simulated and designed using same design basis as above with tray columns. Both the rate-based and the equilibrium-stage based modeling approaches were adopted. Two kinetic models for modeling reactive absorption/stripping reactions of CO2 with aqueous MEA solution were evaluated. Depending on the options to account for mass transfer, the chemical reactions in the liquid film/phase, film resistance and film non-ideality, eight different absorber/stripper models were categorized and investigated. From a parametric design study, the optimum CO2 lean solvent loading was determined with respect to minimum reboiler energy requirement by varying the lean solvent flow rate in a closed-loop simulation environment for each model. It was realized that the success of modeling CO2 capture with MEA depends upon how the film discretization is carried out. It revealed that most of the CO2 was reacted in the film not in the bulk liquid. This insight could not be recognized with the traditional equilibrium-stage modeling. It was found that the optimum/or minimum lean solvent loading ranges from 0.29 to 0.40 and the reboiler energy ranges from 3.3 to 5.1 (GJ/ton captured CO2) depending on the model considered. Between the two process alternatives, the Fluor concept process performs well in terms of plant operating (i.e., 8.5% less energy) and capital cost (i.e., 50% less number of strippers). The potentiality of hybrid processes which combines membrane permeation and conventional gas absorption/stripping using MEA were also examined for post-combustion CO2 capture in AspenPlus®. It was found that the hybrid process may not be a promising alternative for post-combustion CO2 capture in terms of energy requirement for capture and compression. On the other hand, a stand-alone membrane gas separation process showed the lowest energy demand for CO2 capture and compression, and could save up to 15 to 35% energy compare to the MEA capture process depending on the absorption/stripping model used.

Page generated in 0.1028 seconds