• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 3
  • Tagged with
  • 10
  • 10
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dispergierung von feinen Partikelfraktionen in Gasströmungen

Niedballa, Sabine 08 December 2009 (has links) (PDF)
Das Ziel der Arbeit bestand darin, die Wirkung von oberflächenmodifizierenden Zusätzen auf das Dispergieren von feinen Partikeln unter Beachtung der Einflussgrößen (Material, Dispergierluft) zu untersuchen. Ein neues Modell der Dispersionskraft wird für die Beanspruchung eines Modellagglomerates durch geradlinige Anströmung entwickelt. Die Ergebnisse der Modellrechnungen werden durch Dispergieruntersuchungen bestätigt. Es wird ein Wirkungsfenster der oberflächenmodifizierenden Zusätze festgestellt, das von der Partikelgröße, der Breite der Partikelgrößenverteilung, dem Material und der Dispergierbeanspruchung abhängt.
2

Optimierung der Strömungsverhältnisse zur Reduzierung der Ansatzbildung im IS-Ofen

Roumiantsev, Vsevolod 08 December 2009 (has links) (PDF)
Die vorliegende Arbeit beinhaltet Modelluntersuchungen der Strömungsverhältnisse am Beispiel des Imperial Smelting-Ofens. Die Versuche verfolgen das Ziel, Erkenntnisse über optimale Einblasbedingungen der Sekundärluft zu erhalten, um die Neigung zur Ansatzbildung verringern zu können. Die durchgeführten Untersuchungen lassen die Schlussfolgerung zu, dass die Simulation der in der Gasphase ablaufenden Strömungsvorgänge eines pyrometallurgischen Aggregates mittels eines physikalischen Modells realisierbar ist. Aufgrund der Berücksichtigung der Arbeitsweise des Ofens sowie der Ähnlichkeitstheorie bei der Prozessmodellierung, können die erhaltenen Ergebnisse in der Tendenz auf das Original übertragen werden. Für die weitere Erklärung der Problematik der Ansatzbildung in der IS-Anlage werden thermodynamische Berechnungen durchgeführt, Ansatzproben aus dem Originalofen analysiert und die Abscheidungen der Nebelflüssigkeit an den Modellwänden untersucht. Im Ergebnis dieser Untersuchungen werden Vorschläge zur Optimierung des IS-Prozesses unterbreitet.
3

Dispergierung von feinen Partikelfraktionen in Gasströmungen: Einfluss von Dispergierbeanspruchung und oberflächenmodifizierenden Zusätzen

Niedballa, Sabine 03 December 1999 (has links)
Das Ziel der Arbeit bestand darin, die Wirkung von oberflächenmodifizierenden Zusätzen auf das Dispergieren von feinen Partikeln unter Beachtung der Einflussgrößen (Material, Dispergierluft) zu untersuchen. Ein neues Modell der Dispersionskraft wird für die Beanspruchung eines Modellagglomerates durch geradlinige Anströmung entwickelt. Die Ergebnisse der Modellrechnungen werden durch Dispergieruntersuchungen bestätigt. Es wird ein Wirkungsfenster der oberflächenmodifizierenden Zusätze festgestellt, das von der Partikelgröße, der Breite der Partikelgrößenverteilung, dem Material und der Dispergierbeanspruchung abhängt.
4

Optimierung der Strömungsverhältnisse zur Reduzierung der Ansatzbildung im IS-Ofen

Roumiantsev, Vsevolod 05 March 2004 (has links)
Die vorliegende Arbeit beinhaltet Modelluntersuchungen der Strömungsverhältnisse am Beispiel des Imperial Smelting-Ofens. Die Versuche verfolgen das Ziel, Erkenntnisse über optimale Einblasbedingungen der Sekundärluft zu erhalten, um die Neigung zur Ansatzbildung verringern zu können. Die durchgeführten Untersuchungen lassen die Schlussfolgerung zu, dass die Simulation der in der Gasphase ablaufenden Strömungsvorgänge eines pyrometallurgischen Aggregates mittels eines physikalischen Modells realisierbar ist. Aufgrund der Berücksichtigung der Arbeitsweise des Ofens sowie der Ähnlichkeitstheorie bei der Prozessmodellierung, können die erhaltenen Ergebnisse in der Tendenz auf das Original übertragen werden. Für die weitere Erklärung der Problematik der Ansatzbildung in der IS-Anlage werden thermodynamische Berechnungen durchgeführt, Ansatzproben aus dem Originalofen analysiert und die Abscheidungen der Nebelflüssigkeit an den Modellwänden untersucht. Im Ergebnis dieser Untersuchungen werden Vorschläge zur Optimierung des IS-Prozesses unterbreitet.
5

3D-Modellierung des Partikeltransportes in Nanostrukturen zur Simulation von chemischen Schichtabscheidungen

Gehre, Joshua 12 October 2021 (has links)
Für die Herstellung von immer kleiner werdenden elektronischen Bauteilen ist es notwendig, Schichten verschiedener Stoffe auf einem Substrat abzuscheiden. Dazu werden häufig Verfahren verwendet, bei denen Gase in kleine Strukturen eindringen und dort an der Oberfläche reagieren. Damit können Schichten abgeschieden werden. Bei der Gasströmung in mikroskopischen Strukturen auf einem Wafer zeigt sich ein anderes Strömungsverhalten als bei einer Gasströmung in einer makroskopischen Struktur bei Normaldruck. Dabei sind Kollisionen zwischen Gasteilchen oft vernachlässigbar, und die Kollisionen von Teilchen mit der Geometrie, in der sich das Gas befindet, überwiegen. Zur Untersuchung solcher Vorgänge ist es von Interesse, eine derartige Gasströmung und die entsprechenden Schichtabscheidungen simulieren zu können. In dieser Arbeit wurde ein Simulationsverfahren entwickelt, welches Gase im Bereich der freien Molekülströmung und deren chemische und physikalische Interaktionen an Oberflächen simulieren kann. Die Simulationen sind dabei speziell für die freie Molekülströmung optimiert und ist nicht auf viele Aspekte angewiesen, die in anderen Strömungsregimen notwendig sind. Dies geschieht mittels einer Monte-Carlo-Simulation von Teilchen, welche mittels Pfadverfolgung in einer beliebigen dreidimensionalen Geometrie simuliert werden können. Dabei kann eine große Menge an verschiedenen Wechselwirkungen von Teilchen mit den Wänden der Geometrie simuliert werden. Es erfolgten Vergleiche mit bekannten Literaturwerten, wie der Durchlasswahrscheinlichkeit eines Zylinders oder einem einzelnen ALD Schritt in einem zylinderförmigen Loch bei verschiedenen Adsorptionswahrscheinlichkeiten. Das verwendete Simulationsverfahren erlaubt eine einfache Erweiterung von Wechselwirkungen, welche an Oberflächen auftreten können. So wurde auch ein PVD Verfahren und der Einfluss eines Kollimators auf die Teilchenströmung untersucht.:Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis Symbolverzeichnis 1 Motivation und Einführung 2 Grundlagen 2.1 Knudsenzahl 2.1.1 Strömungsregime 2.1.2 Mittlere freie Weglänge bei verschiedenen Teilchenarten 2.2 Schichtabscheidungen 2.2.1 Chemische Gasphasenabscheidung 2.2.2 Atomlagenabscheidung 2.2.3 Physikalische Gasphasenabscheidung 2.3 Chemische Reaktionen an Oberflächen 2.3.1 Adsorption an einer freien Oberfläche 2.4 Simulationsansätze 2.4.1 Direct Simulation Monte Carlo 2.4.2 Angular Coefficient Method 2.4.3 Pfadverfolgung von Teilchen 2.4.4 Finite Volumen Methoden 3 Modellentwicklung 3.1 Grundidee 3.2 Interaktionen an Wänden 3.2.1 Reflexion und Reemission von Teilchen 3.2.2 Chemische Reaktionen 3.2.3 Tabellierte Oberflächeninteraktionen 3.3 Erweiterung für Bereiche geringerer Knudsenzahlen 3.4 Implementation 3.4.1 Wandkollisionen 3.4.2 Raytracing und Unterteilung der Geometrie 3.4.3 Simulationsdefinition 3.4.4 Simulationen in 2D 4 Simulationen und Ergebnisse 4.1 Durchlasswahrscheinlichkeit eines Hohlzylinders 4.2 Durchlasswahrscheinlichkeit durch ein gekrümmtes Rohr in 2D 4.3 ALD in einem zylinderförmigen Loch 4.4 Gleichgewicht zwischen Adsorption und Desorption an einer Oberfläche 4.5 Sputterabscheidung von Kupfer in einem PVD-Reaktor 4.5.1 Simulationen in einem Vakuum 4.5.2 Simulation bei Verwendung eines Hintergrundgases 5 Zusammenfassung und Ausblick 5.1 Zusammenfassung 5.2 Ausblick Literaturverzeichnis Danksagung Selbstständigkeitserklärung
6

Erzeugung und Anwendung modulierter Prozessgasströme beim Schutzgasschweißen

Thurner, Stefan 24 September 2008 (has links) (PDF)
Die Arbeit zeigt Möglichkeiten zur Erzeugung und Anwendung zeitlich veränderlicher Gasvolumenströme beim Schutzgasschweißen auf. Es wird ein System zur Erzeugung definiert gepulster Gasströme vorgestellt, das einfach in bestehende Anlagentechnik integriert werden kann. Der Einfluss eines aktiv geregelten Gasstroms auf die Kaltgasströmung und hervorgerufene Effekte im Lichtbogenprozess werden grundlegend untersucht. Darauf basierend werden sinnvolle Parameterbereiche abgeleitet. Anhand der Auswertung von Schweißversuchen werden verfahrensspezifische Vorteile sowie technologische Grenzen bei Anwendung der Gaspulstechnik zum Schutzgasschweißen dargelegt. / This thesis shows the possibilities for the creation and application of temporally varying gas flow rates for gas-shielded arc welding. A system for generation of defined pulsed volume flows is presented, which can be easily integrated into existing welding equipment. The influence of an actively regulated gas flow rate on the pure gas flow and caused effects in the arc process are investigated. Based on this an array of appropiate parameters are derived. By means of the evaluation of welding tests process specific advantages as well as technological limits for using pulsed gas flows for gas-shielded arc welding are demonstrated.
7

Coherent gas flow patterns in heterogeneous permeability fields

Samani, Shirin 16 February 2012 (has links) (PDF)
Gas injection into saturated porous media has a high practical relevance. It is applied in groundwater remediation (air sparging), in CO2 sequestration into saline aquifers, and in enhanced oil recovery of petroleum reservoirs. This wide range of application necessitates a comprehensive understanding of gas flow patterns that may develop within the porous media and required modeling of multi-phase flow. There is an ongoing controversy in literature, if continuum models are able to describe the complex flow pattern observed in heterogeneous porous media, especially the channelized stochastic flow pattern. Based on Selker’s stochastic hypothesis, a gas channel is caused by a Brownian-motion process during gas injection. Therefore, the pore-scale heterogeneity will determine the shape of the single stochastic gas channels. On the other hand there are many studies on air sparging, which are based on continuum modeling. Up to date it is not clear under which conditions a continuum model can describe the essential features of the complex gas flow pattern. The aim of this study is to investigate the gas flow pattern on bench-scale and field scale using the continuum model TOUGH2. Based on a comprehensive data set of bench-scale experiments and field-scale experiments, we conduct for the first time a systematic study and evaluate the prediction ability of the continuum model. A second focus of this study is the development of a “real world”-continuum model, since on all scales – pore-scale, bench scale, field scale – heterogeneity is a key driver for the stochastic gas flow pattern. Therefore, we use different geostatistical programs to include stochastic conditioned and unconditioned parameter fields. Our main conclusion from bench-scale experiments is that a continuum model, which is calibrated by different independent measurements, has excellent prediction ability for the average flow behavior (e.g. the gas volume-injection rate relation). Moreover, we investigate the impact of both weak and strong heterogeneous parameter fields (permeability and capillary pressure) on gas flow pattern. The results show that a continuum model with weak stochastic heterogeneity cannot represent the essential features of the experimental gas flow pattern (e.g., the single stochastic gas channels). Contrary, applying a strong heterogeneity the continuum model can represent the channelized flow. This observation supports Stauffer’s statement that a so-called subscale continuum model with strong heterogeneity is able to describe the channelized flow behavior. On the other hand, we compare the theoretical integral gas volumes with our experiments and found that strong heterogeneity always yields too large gas volumes. At field-scale the 3D continuum model is used to design and optimize the direct gas injection technology. The field-scale study is based on the working hypotheses that the key parameters are the same as at bench-scale. Therefore, we assume that grain size and injection rate will determine whether coherent channelized flow or incoherent bubbly flow will develop at field-scale. The results of four different injection regimes were compared with the data of the corresponding field experiments. The main conclusion is that because of the buoyancy driven gas flow the vertical permeability has a crucial impact. Hence, the vertical and horizontal permeability should be implemented independently in numerical modeling by conditioned parameter fields.
8

Erzeugung und Anwendung modulierter Prozessgasströme beim Schutzgasschweißen

Thurner, Stefan 12 September 2008 (has links)
Die Arbeit zeigt Möglichkeiten zur Erzeugung und Anwendung zeitlich veränderlicher Gasvolumenströme beim Schutzgasschweißen auf. Es wird ein System zur Erzeugung definiert gepulster Gasströme vorgestellt, das einfach in bestehende Anlagentechnik integriert werden kann. Der Einfluss eines aktiv geregelten Gasstroms auf die Kaltgasströmung und hervorgerufene Effekte im Lichtbogenprozess werden grundlegend untersucht. Darauf basierend werden sinnvolle Parameterbereiche abgeleitet. Anhand der Auswertung von Schweißversuchen werden verfahrensspezifische Vorteile sowie technologische Grenzen bei Anwendung der Gaspulstechnik zum Schutzgasschweißen dargelegt. / This thesis shows the possibilities for the creation and application of temporally varying gas flow rates for gas-shielded arc welding. A system for generation of defined pulsed volume flows is presented, which can be easily integrated into existing welding equipment. The influence of an actively regulated gas flow rate on the pure gas flow and caused effects in the arc process are investigated. Based on this an array of appropiate parameters are derived. By means of the evaluation of welding tests process specific advantages as well as technological limits for using pulsed gas flows for gas-shielded arc welding are demonstrated.
9

Coherent gas flow patterns in heterogeneous permeability fields: Coherent gas flow patterns in heterogeneous permeability fields: from bench-scale to field-scale

Samani, Shirin 02 August 2012 (has links)
Gas injection into saturated porous media has a high practical relevance. It is applied in groundwater remediation (air sparging), in CO2 sequestration into saline aquifers, and in enhanced oil recovery of petroleum reservoirs. This wide range of application necessitates a comprehensive understanding of gas flow patterns that may develop within the porous media and required modeling of multi-phase flow. There is an ongoing controversy in literature, if continuum models are able to describe the complex flow pattern observed in heterogeneous porous media, especially the channelized stochastic flow pattern. Based on Selker’s stochastic hypothesis, a gas channel is caused by a Brownian-motion process during gas injection. Therefore, the pore-scale heterogeneity will determine the shape of the single stochastic gas channels. On the other hand there are many studies on air sparging, which are based on continuum modeling. Up to date it is not clear under which conditions a continuum model can describe the essential features of the complex gas flow pattern. The aim of this study is to investigate the gas flow pattern on bench-scale and field scale using the continuum model TOUGH2. Based on a comprehensive data set of bench-scale experiments and field-scale experiments, we conduct for the first time a systematic study and evaluate the prediction ability of the continuum model. A second focus of this study is the development of a “real world”-continuum model, since on all scales – pore-scale, bench scale, field scale – heterogeneity is a key driver for the stochastic gas flow pattern. Therefore, we use different geostatistical programs to include stochastic conditioned and unconditioned parameter fields. Our main conclusion from bench-scale experiments is that a continuum model, which is calibrated by different independent measurements, has excellent prediction ability for the average flow behavior (e.g. the gas volume-injection rate relation). Moreover, we investigate the impact of both weak and strong heterogeneous parameter fields (permeability and capillary pressure) on gas flow pattern. The results show that a continuum model with weak stochastic heterogeneity cannot represent the essential features of the experimental gas flow pattern (e.g., the single stochastic gas channels). Contrary, applying a strong heterogeneity the continuum model can represent the channelized flow. This observation supports Stauffer’s statement that a so-called subscale continuum model with strong heterogeneity is able to describe the channelized flow behavior. On the other hand, we compare the theoretical integral gas volumes with our experiments and found that strong heterogeneity always yields too large gas volumes. At field-scale the 3D continuum model is used to design and optimize the direct gas injection technology. The field-scale study is based on the working hypotheses that the key parameters are the same as at bench-scale. Therefore, we assume that grain size and injection rate will determine whether coherent channelized flow or incoherent bubbly flow will develop at field-scale. The results of four different injection regimes were compared with the data of the corresponding field experiments. The main conclusion is that because of the buoyancy driven gas flow the vertical permeability has a crucial impact. Hence, the vertical and horizontal permeability should be implemented independently in numerical modeling by conditioned parameter fields.
10

Coupling between stochastic particle transport models and topographic thin film growth

Gehre, Joshua 01 April 2022 (has links)
Manufacturing of electronics devices, continuously decreasing in size, commonly requires the vapor phase deposition of materials into small structures on a wafer, often at a nanometer scale. In this thesis the goal is to simulate vapor-phase deposition processes at a scale where fully atomistic simulations using Molecular Dynamics are no longer feasible. This is achieved by combing two methods, one simulating the gas flow and deposition processes and another method simulating the changing surface. A Particle Monte Carlo method, specifically designed for free molecular flow, the typical flow regime at this length scale, is used. The simulation of growing surfaces uses the Level Set Method. Combining these two methods requires some additional coupling steps presented in this work. With the coupled model, different deposition processes are simulated within trenches to observe how well these processes perform for achieving a uniform deposition, as well as evaluating different process conditions.:Table of Contents List of Figures List of Tables List of Abbreviations List of Symbols 1 Introduction 2 Basics 2.1 Surface deposition processes 2.1.1 Chemical Vapor Deposition 2.1.2 Atomic Layer Deposition 2.1.3 Physical Vapor Deposition 2.2 Simulation approaches for surface depositions 2.2.1 Modeling chemical reactions on a surface 2.2.2 Interaction tables for PVD 2.3 Flow regimes 2.4 Molecular Dynamics 2.5 Particle Monte Carlo 2.6 Marker Particle Method 2.7 Level Set Method 2.7.1 Re-initialization of the signed distance function 2.7.2 Extension Velocities 2.7.3 Fast Marching Method 2.7.4 Upwind scheme 2.7.5 Curvature 2.8 Marching-Squares/Cubes Algorithm 3 Methods and Implementation 3.1 Software 3.1.1 External libraries 3.1.2 Geosect 3.2 Initialization of the signed distance field 3.3 Coupling between particle simulations and Level Set 3.3.1 The simulation cycle 3.3.2 Conversion from a grid to a discrete mesh 3.3.3 Extension of growth rates from a mesh to a grid 3.4 Integrating the Level Set Equation 3.4.1 Splitting the number of particles between different steps 3.4.2 Re-initializing the signed distance function 3.4.3 Handling surface coverage 3.4.4 The full update of the surface 3.5 Curvature dependent reflow 3.6 Level Set for radial symmetry 4 Verification 4.1 Testing different integration schemes 4.1.1 Growth of a circle in a linear velocity field 4.1.2 PVD in trenches 4.2 Mass preservation during curvature dependent reflow 4.3 Comparisons between 2D, radial 2D and 3D 4.3.1 Comparing 2D and 3D 4.3.2 Comparing radial 2D and 3D 5 Process Simulations 5.1 Resputter process using a PVD 5.1.1 Simulations and their parameters 5.1.2 Surfaces after the deposition step 5.1.3 Surface growth in the resputter step 5.1.4 Conditions for improved layer thickness 5.2 CVD with an effective sticking coefficient 5.3 Incomplete ALD cycles 5.4 Deposition onto a complex 3D shape 6 Conclusion Bibliography Acknowledgment Statement of authorship

Page generated in 0.0414 seconds