• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 8
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 86
  • 24
  • 24
  • 21
  • 19
  • 18
  • 14
  • 14
  • 12
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Using antisense oligonucleotide in whole embryo culture to study gene interactions during mouse gastrulation /

Xu, Jian, January 1998 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1998. / Includes bibliographical references (leaves 106-115).
22

The role of yolk syncytial layer and blastoderm movements during gastrulation in zebrafish

Carvalho, Lara 17 January 2008 (has links) (PDF)
During gastrulation, a set of highly coordinated morphogenetic movements creates the shape and internal organization of the embryo. In teleostean fishes, these morphogenetic movements involve not only the embryonic progenitor cells (deep cells) but also two extra-embryonic tissues: an outer sheet of epithelial cells (EVL) and a yolk syncytial layer (YSL). Epiboly is characterized by the spreading of the blastoderm (deep cells and EVL) to cover the large yolk cell, whereas convergence and extension leads, respectively, to mediolateral narrowing and anteroposterior elongation of the embryo. Recent studies have shown that the nuclei of the YSL undergo epiboly and convergence and extension movements similarly to the overlying deep cells, suggesting that these tissues interact during gastrulation. However, it is so far not clear whether and how the movements of YSL nuclei and deep cells influence each other. In the first part of this thesis, the convergence and extension movement of YSL nuclei was quantitatively compared to the movement of the overlying mesendodermal progenitor (or “hypoblast)” cells. This revealed that, besides the similarity in the overall direction of movement, YSL nuclei and hypoblast cell movements display differences in speed and directionality. Next, the interaction between YSL and hypoblast was addressed. The movement of the blastoderm was analyzed when YSL nuclei movement was impaired by interfering with the YSL microtubule cytoskeleton. We found that YSL and blastoderm epiboly were strongly reduced, while convergence and extension were only mildly affected, suggesting that YSL microtubules and YSL nuclei movement are required for epiboly, but not essential for convergence and extension of the blastoderm. We also addressed whether blastodermal cells can influence YSL nuclei movement. In maternal-zygotic one-eyed pinhead (MZoep) mutant embryos, which lack hypoblast cells, YSL nuclei do not undergo proper convergence movement. Moreover, transplantation of wild type hypoblast cells into these mutants locally rescued the YSL nuclei convergence phenotype, indicating that hypoblast cells can control the movement of YSL nuclei. Finally, we propose that the hypoblast influences YSL nuclei movement as a result of shape changes caused by the collective movement of cells, and that this process requires the adhesion molecule E-cadherin.
23

The Role of Cell Division Orientation during Zebrafish Early Development

Quesada Hernandez, Elena 26 January 2011 (has links) (PDF)
The development of multicellular organisms is dependent on the tight coordination between tissue growth and morphogenesis. The stereotypical orientation of cell divisions has been proposed to be a fundamental mechanism by which proliferating and growing tissues take shape. However, the actual contribution of stereotypical cell division orientation (SDO) to tissue morphogenesis is unclear. In zebrafish, cell divisions with stereotypical orientation have been implicated in both body axis elongation and neural rod formation, although there is little direct evidence for a critical function of SDO in either of these processes. Making use of extended time-lapse, multi-photon microscopy and a careful three-dimensional analysis of cell division orientation, we show that SDO is required for neural rod midline formation during neurulation, but dispensable for body axis elongation during gastrulation. Our data indicate that SDO during both gastrulation and neurulation is dependent on the non-canonical Wnt receptor Frizzled 7 (Fz7), and that interfering with cell division orientation leads to severe defects in neural rod midline formation, but not body axis elongation. These findings suggest a novel function for Fz7 controlled cell division orientation in neural rod midline formation during neurulation. They also shed new light on the field of cell division orientation by uncoupling it from tissue elongation.
24

From lateral plate mesoderm formation to limb position - Linking hox collinear activation and forelimb position in birds / De la formation de la lame latérale à la position des membres - liens entre la colinéarité temporelle des gènes hox et la position de l'aile chez les oiseaux

Moreau, Chloé 30 November 2017 (has links)
La position des membres le long du corps est reproductible chez une même espèce mais est très variable entre différentes espèces. Comment les membres acquièrent leur position et quel mécanisme est à l'origine de ces variations est à ce jour non élucidé. De part leur rôle dans la mise en place des axes embryonnaires, les gènes Hox sont depuis longtemps suspectés de jouer un rôle dans ce processus. Cependant les différentes preuves disponibles à ce jour restent indirectes et corrélatives. Chez l'embryon de poulet, je montre que la position des membres est établit précocement au cours du développement, lors de la gastrulation. Je démontre que la formation de la lame latérale (i.e. le tissue d'origine des membres) est un processus graduel et que l'activation séquentielle des gènes Hox spécifie ce tissue en domaines du membre et du flanc. Dans un second temps, une combinaison d'actions activatrice et répressive des gènes Hox sur le programme d'initiation du membre, actions liées à leur organisation colinéaire, est critique pour l'organisation de la lame latérale en domaines du membre et du flanc. Enfin, en étudiant des embryons de différentes espèces d'oiseaux présentant des variations dans la longueur de leur cou et donc dans la position de leur ailes (le poulet, l'autruche et le diamant mandarin), je montre que des changements relatifs dans la séquence d'activation colinéaire des gènes Hox au cours de la gastrulation sous-tendent les variations naturelles de la position de l'aile. L'ensemble de ces résultats montre que les gènes Hox jouent un rôle direct et précoce dans le positionnement des membres et propose un model général de mise en place d'un organisme par ces gènes. / Limb position along the main body axis is highly consistent within one species but very variable among tetrapods. Despite major advances in our understanding of limb patterning in three dimensions, how limbs reproducibly form along the anteroposterior axis remains largely unknown. Hox genes have long been suspected to play a role in this process, however supporting evidences are mostly correlative and a direct role has yet to be demonstrated. Here, using bird embryos, I show that limb position is established very early during development, during the process of gastrulation. I find that the formation of the Lateral Plate Mesoderm (i.e. the embryonic compartment from which limbs will form) is a progressive process and that co-linear activation of Hox genes sequentially patterns it along the antero-posterior axis. Subsequent combinatorial activation and repression activities of Hox genes on limb initiation are particularly critical to pattern the LPM into limb- and non-limb-forming domains. Finally, by analyzing chicken, zebra finch and ostrich embryos which exhibit variation in their forelimb position, I show that relative changes in the timing of co-linear Hox gene activation during gastrulation underlie variation in limb position. Altogether these result shed light on the cellular and molecular mechanism that regulate limb position by showing a direct and early role for Hox genes in this process during gastrulation and provide a mechanism for variation in body plan organization observed in tetrapods.
25

Internalisation mechanisms of the endoderm during gastrulation in the zebrafish embryo / Mécanismes d'internalisation de l'endoderme pendant la gastrulation chez l'embryon de poisson-zèbre

Giger, Florence 23 September 2016 (has links)
Au cours du développement, les cellules sont progressivement séparées dans des territoires distincts délimités par des frontières embryonnaires. La première ségrégation a lieu pendant la gastrulation, quand l’embryon s’organise en trois feuillets embryonnaires, l’ectoderme, le mésoderme et l’endoderme. Les mécanismes moléculaires et cellulaires assurant cette ségrégation n’ont pas encore été élucidés. Au cours de ma thèse, je me suis focalisée sur l’internalisation de l’endoderme chez le poisson-zèbre. À partir de résultats in vitro, il a été suggéré que les progéniteurs de feuillets embryonnaires soient ségrégés par un tri cellulaire passif. En combinant des expériences de transplantation de cellules, une imagerie confocale en temps réel et des analyses fonctionnelles, j’ai montré que l’internalisation des cellules endodermiques est due en réalité à un processus de migration active dépendante de Rac1 et de son effecteur Arp2/3, un régulateur direct de l’actine. De manière surprenante, les cellules endodermiques ne sont pas attirées par leur destination interne, mais semblent plutôt migrer hors de leurs voisines. Ce processus est dépendant de la voie Wnt/PCP et de la N-cadhérine. De plus, la N-cadhérine est suffisante pour induire l’internalisation de cellules ectodermiques, sans modifier leur identité. Dans leur ensemble, ces résultats conduisent à un nouveau modèle de formation des feuillets embryonnaires dans lequel les cellules endodermiques migrent activement hors de l’épiblaste pour atteindre leur position interne dans l’embryon. / During development, cells are progressively separated into distinct territories, delimited by embryonic boundaries. The first segregation event occurs during gastrulation, when the embryo is organised in three germ-layers, the ectoderm, the mesoderm and the endoderm. The molecular and cellular mechanisms ensuring this segregation have not yet been elucidated. During my PhD thesis, I have focused on the endoderm internalisation in the zebrafish embryo. Based on in vitro results, it has been suggested that germ-layer progenitors would be segregated by a passive cell sorting. Combining cell transplantation, live confocal microscopy and functional analyses, I have shown that endodermal cell internalisation actually results from an active migration process dependent on Rac1 and its effector Arp2/3, a direct regulator of actin. Strikingly, endodermal cells are not attracted to their internal destination but rather appear to migrate out of their neighbouring cells. This process is dependent on the Wnt/PCP pathway and N-cadherin. Furthermore, N-cadherin is sufficient to trigger the internalisation of ectodermal cells, without affecting their fate. Overall, these results lead to a new model of germ-layer formation, in which endodermal cells actively migrate out of the epiblast to reach their internal position.
26

The Role of Cell Division Orientation during Zebrafish Early Development

Quesada Hernandez, Elena 17 January 2011 (has links)
The development of multicellular organisms is dependent on the tight coordination between tissue growth and morphogenesis. The stereotypical orientation of cell divisions has been proposed to be a fundamental mechanism by which proliferating and growing tissues take shape. However, the actual contribution of stereotypical cell division orientation (SDO) to tissue morphogenesis is unclear. In zebrafish, cell divisions with stereotypical orientation have been implicated in both body axis elongation and neural rod formation, although there is little direct evidence for a critical function of SDO in either of these processes. Making use of extended time-lapse, multi-photon microscopy and a careful three-dimensional analysis of cell division orientation, we show that SDO is required for neural rod midline formation during neurulation, but dispensable for body axis elongation during gastrulation. Our data indicate that SDO during both gastrulation and neurulation is dependent on the non-canonical Wnt receptor Frizzled 7 (Fz7), and that interfering with cell division orientation leads to severe defects in neural rod midline formation, but not body axis elongation. These findings suggest a novel function for Fz7 controlled cell division orientation in neural rod midline formation during neurulation. They also shed new light on the field of cell division orientation by uncoupling it from tissue elongation.
27

Regulation of Zebrafish Gastrulation Movements by slb/wnt11 / Regulation der Zebrafisch-Gastrulation durch slb/wnt11

Ulrich, Florian 02 August 2005 (has links) (PDF)
During zebrafish gastrulation, highly coordinated cellular rearrangements lead to the formation of the three germ layers, ectoderm, mesoderm and endoderm. Recent studies have identified silberblick (slb/wnt11) as a key molecule that regulates gastrulation movement through a conserved pathway, which shares significant similarity with a signalling pathway that establishes epithelial planar cell polarity (PCP) in Drosophila (Heisenberg et al., 2000; Veeman et al., 2003), suggesting a role for cell polarity in regulating gastrulation movements. However, the cellular and molecular mechanisms by which slb/wnt11 functions during zebrafish gastrulation are still not fully understood. In the first part of the thesis, the three-dimensional movement and morphology of individual cells in living embryos during the course of gastrulation were recorded and analysed using high resolution confocal microscopy. It was shown that in slb/wnt11 mutant embryos, hypoblast cells within the forming germ ring display slower, less directed migratory movements at the onset of gastrulation, which are accompanied by defects in the orientation of cellular processes along the individual movement directions of these cells. The net movement direction of the cells is not changed, suggesting that slb/wnt11-mediated orientation of cellular processes serves to facilitate and stabilize cell movements during gastrulation. By using an in vitro reaggregation assay on mesendodermal cells, combined with an analysis of the endogenous expression levels and distribution of E-cadherin in zebrafish embryos at the onset of gastrulation, E-cadherin mediated adhesion was found to be a downstream mechanism regulating slb/wnt11 function during gastrulation. Interestingly, the effects of slb/wnt11 on cell adhesion appear to be dependent on Rab5-mediated endocytosis, suggesting endocytic turnover of cell-cell contacts as one possible mechanism through which slb/wnt11 mediates its effects on gastrulation movements. - Die Druckexemplare enthalten jeweils eine CD-ROM als Anlagenteil: QuickTimeMovies (ca. 23 MB)- Übersicht über Inhalte siehe Dissertation S. 92 - 93"
28

Function of two closely related fibroblast growth factors in early mesoderm development of Drosophila melanogaster

Klingseisen, Anna January 2009 (has links)
Thisbe (Ths) and Pyramus (Pyr) are the ligands for the Fibroblast-Growth-Factor (FGF)receptor Heartless (Htl), which is expressed in all mesodermal cells during gastrulation. To understand how these two FGFs orchestrate mesoderm spreading in gastrulation and mesoderm differentiation during organogenesis, loss and gain of function studies were performed. In an approach of functional analysis, a single mutant allele of ths was generated, ths759, for comparison of the single mutant conditions of ths and the null mesodermal cells to migrate and differentiate in a precise pattern.
29

Gene expression profiling reveals novel attributes of the mouse definitive endoderm

McKnight, Kristen Dawn 05 1900 (has links)
Gastrulation is one of the most critical events of embryogenesis, generating the three primary germ layers (definitive endoderm, mesoderm, and ectoderm) and establishing the embryonic body plan. The definitive endoderm, which generates the lungs, liver, pancreas, and digestive tract, has become a tissue of particular interest in recent years. Understanding definitive endoderm formation and patterning will greatly aid progress in the in vitro differentiation of embryonic stem cells to definitive endoderm for use in treatment of diseases such as diabetes and hepatitis as an alternative for whole organ replacement. Gene targeting studies have demonstrated a critical role for the Nodal signaling pathway and the forkhead transcription factors Foxh1 and Foxa2 in specification of a group of cells referred to as the anterior primitive streak (APS). However, the transcriptional targets of Foxh1 and/or Foxa2 other than Nodal that regulate specification of this group of cells are currently unknown. Fate mapping and lineage tracing experiments have shown the APS to be the source of the definitive endoderm. However, many questions regarding specification and patterning of the definitive endoderm remain. The study of this tissue has been hampered by the lack of genetic markers specific for the definitive endoderm as many of the current markers, including Cerl, Foxa2, and Sox17, are also expressed in the visceral endoderm, an extraembryonic tissue. To further investigate the role of Foxh1 in specification of the anterior primitive streak and to address the lack of genetic markers for the definitive endoderm we performed expression profiling on post-implantation mouse embryos using Affymetrix™ GeneChips®. From this analysis we identified and characterized a novel marker of the mouse definitive endoderm. Examination of this, and other, novel endoderm markers in Foxh1 and Foxa2 deficient mouse embryos revealed that contrary to current models of definitive endoderm formation, we find some definitive endoderm is formed in these mutants. Specifically, specification of the midgut and hindgut definitive endoderm is largely unaffected, while foregut formation is severely affected. These results suggest that the formation of the midgut and hindgut definitive endoderm populations is independent of the anterior primitive streak and separate from the foregut definitive endoderm. This represents a major insight into the mechanisms regulating endoderm formation and patterning.
30

Gene expression profiling reveals novel attributes of the mouse definitive endoderm

McKnight, Kristen Dawn 05 1900 (has links)
Gastrulation is one of the most critical events of embryogenesis, generating the three primary germ layers (definitive endoderm, mesoderm, and ectoderm) and establishing the embryonic body plan. The definitive endoderm, which generates the lungs, liver, pancreas, and digestive tract, has become a tissue of particular interest in recent years. Understanding definitive endoderm formation and patterning will greatly aid progress in the in vitro differentiation of embryonic stem cells to definitive endoderm for use in treatment of diseases such as diabetes and hepatitis as an alternative for whole organ replacement. Gene targeting studies have demonstrated a critical role for the Nodal signaling pathway and the forkhead transcription factors Foxh1 and Foxa2 in specification of a group of cells referred to as the anterior primitive streak (APS). However, the transcriptional targets of Foxh1 and/or Foxa2 other than Nodal that regulate specification of this group of cells are currently unknown. Fate mapping and lineage tracing experiments have shown the APS to be the source of the definitive endoderm. However, many questions regarding specification and patterning of the definitive endoderm remain. The study of this tissue has been hampered by the lack of genetic markers specific for the definitive endoderm as many of the current markers, including Cerl, Foxa2, and Sox17, are also expressed in the visceral endoderm, an extraembryonic tissue. To further investigate the role of Foxh1 in specification of the anterior primitive streak and to address the lack of genetic markers for the definitive endoderm we performed expression profiling on post-implantation mouse embryos using Affymetrix™ GeneChips®. From this analysis we identified and characterized a novel marker of the mouse definitive endoderm. Examination of this, and other, novel endoderm markers in Foxh1 and Foxa2 deficient mouse embryos revealed that contrary to current models of definitive endoderm formation, we find some definitive endoderm is formed in these mutants. Specifically, specification of the midgut and hindgut definitive endoderm is largely unaffected, while foregut formation is severely affected. These results suggest that the formation of the midgut and hindgut definitive endoderm populations is independent of the anterior primitive streak and separate from the foregut definitive endoderm. This represents a major insight into the mechanisms regulating endoderm formation and patterning.

Page generated in 0.1072 seconds