561 |
Evaluation of suitability of water hyacinth as feedstock for bio-energy production / Cornelis JohannesJ. SchabortSchabort, Cornelis Johannes January 2014 (has links)
The suitability of water hyacinth (Eichornia crassipes) as a viable feedstock for renewable energy
production was investigated in this project. Water hyacinth used in this study was harvested from
the Vaal River near Parys in the northwest region of the Free State province, South Africa (26°54′S
27°27′E). The wet plants were processed in the laboratory at the North-West University by
separating the roots from the leaves and the stems, thus obtaining two separate water hyacinth
feedstock.
Characterisation of the feedstock showed that the stems and leaves are more suitable for bio-energy
production than roots, due to the higher cellulose and hemicellulose content and very low lignin
content of the stems and leaves. Water hyacinth was evaluated as feedstock for the production of
bio-ethanol gel, bio-ethanol, bio-oil and bio-char. The recovery of water from the wet plants for use
in bio-refining or for use as drip-irrigation in agriculture was also investigated.
Cellulose was extracted from water hyacinth feedstock to be used as a gelling agent for the
production of ethanol-gel fuel. A yield of 200 g cellulose/kg dry feedstock was obtained. The
extracted cellulose was used to produce ethanol-gel with varying water content. The gel with
properties closest to the SANS 448 standard contained 90 vol% ethanol and 10 vol% water, with 38
wt% cellulose.
This gel was found to ignite readily and burn steadily, without flaring, sudden deflagrations,
sparking, splitting, popping, dripping or exploding from ignition until it had burned to extinction, as
required by SANS 448. The only specifications that could not be met were the viscosity (23,548 cP)
and the high waste residue (32 wt%) left after burning. The other major concern is the extremely
high costs involved with the manufacturing of ethanol-gel from water hyacinth cellulose. It can be
concluded that ethanol-gel cannot be economically produced using water hyacinth as feedstock.
Chemical and enzymatic extraction of water from the feedstock, which is stems and leaves or roots,
showed that the highest yield of water was obtained using a combination of Celluclast 1.5 L, Pectinex
Ultra SP-L and additional de-ionised water. A yield of 0.89 ± 0.01 gwater/gwater in biomass was realised. This
is, however, only 0.86 wt% higher than the highest yield obtained (0.87 ± 0.01 gwater/gwater in biomass)
using only Pectinex Ultra SP-L and de-ionised water. It is recommended to use only Pectinex Ultra
SP-L and de-ionised water at a pH of 3.5 and a temperature of 40°C. Using one enzyme instead of
two reduces operating costs and simplifies the chemical extraction process. The extracted water, both filtered and unfiltered, was not found to be suitable for domestic use
without further purification to reduce the total dissolved solids (TDS), potassium and manganese
levels. Both the unfiltered and filtered water were, however, found to be suitable for industrial and
agricultural purposes, except for the high TDS levels. If the TDS and suspended particle level can be
reduced, the extracted water would be suitable for domestic, industrial and agricultural use.
The potential fermentation of the sugars derived from the water hyacinth, using ultrasonic
pretreatment, was investigated. Indirect ultrasonic treatment (ultrasonic bath) proved to be a better
pretreatment method than direct sonication (ultrasonic probe). The optimum sugar yield for the
ultrasonic bath pretreatment with 5% NaOH was found to be 0.15 g sugar/g biomass (0.47 g sugar/g
available sugar) using an indirect sonication energy input of 27 kJ/g biomass. The optimum sugar
yield is lower than those reported in other studies using different pretreatment methods.
Theoretically a maximum of 0.24 g ethanol can be obtained per g available sugar. This relates to an
ethanol yield of 0.08 g ethanol/kg wet biomass. The low yield implies that ethanol production from
water hyacinth is not economically feasible.
The production of bio-oil and bio-char from water hyacinth through thermochemical liquefaction of
wet hyacinth feedstock was investigated. An optimum bio-char yield of 0.55 g bio-char/g biomass
was achieved using an inert atmosphere (nitrogen) at 260°C and the stems and leaves as feedstock.
With the roots as feedstock a slightly lower optimum yield of 0.45 g bio-char/g biomass was found
using a non-reducing atmosphere (carbon monoxide) at 280°C. The bio-oil yield was too low to
accurately quantify.
As water is required during thermochemical liquefaction, it was found unnecessary to dry the
biomass to the same extent as was the case with the pretreatment and fermentation of the water
hyacinth, making this a more feasible route for biofuel production. Bio-char produced through
liquefaction of roots as the feedstock and leaves and stems as the other feedstock had a higher
heating value (HHV) of 10.89 ± 0.45 MJ/kg and 23.31 ± 0.45 MJ/kg respectively. Liquefaction of
water hyacinth biomass increased the HHV of the feedstock to a value comparable to that of low
grade coal. This implies a possible use of water hyacinth for co-gasification.
The most effective route for bio-energy production in the case of water hyacinth was found to be
thermochemical liquefaction (12.8 MJ/kg wet biomass). Due to the high production costs involved, it is recommended to only use water hyacinth as a feedstock for biofuel production if no alternative
feedstock are available. / MIng (Chemical Engineering), North-West University, Potchefstroom Campus, 2014
|
562 |
Evaluation of suitability of water hyacinth as feedstock for bio-energy production / Cornelis JohannesJ. SchabortSchabort, Cornelis Johannes January 2014 (has links)
The suitability of water hyacinth (Eichornia crassipes) as a viable feedstock for renewable energy
production was investigated in this project. Water hyacinth used in this study was harvested from
the Vaal River near Parys in the northwest region of the Free State province, South Africa (26°54′S
27°27′E). The wet plants were processed in the laboratory at the North-West University by
separating the roots from the leaves and the stems, thus obtaining two separate water hyacinth
feedstock.
Characterisation of the feedstock showed that the stems and leaves are more suitable for bio-energy
production than roots, due to the higher cellulose and hemicellulose content and very low lignin
content of the stems and leaves. Water hyacinth was evaluated as feedstock for the production of
bio-ethanol gel, bio-ethanol, bio-oil and bio-char. The recovery of water from the wet plants for use
in bio-refining or for use as drip-irrigation in agriculture was also investigated.
Cellulose was extracted from water hyacinth feedstock to be used as a gelling agent for the
production of ethanol-gel fuel. A yield of 200 g cellulose/kg dry feedstock was obtained. The
extracted cellulose was used to produce ethanol-gel with varying water content. The gel with
properties closest to the SANS 448 standard contained 90 vol% ethanol and 10 vol% water, with 38
wt% cellulose.
This gel was found to ignite readily and burn steadily, without flaring, sudden deflagrations,
sparking, splitting, popping, dripping or exploding from ignition until it had burned to extinction, as
required by SANS 448. The only specifications that could not be met were the viscosity (23,548 cP)
and the high waste residue (32 wt%) left after burning. The other major concern is the extremely
high costs involved with the manufacturing of ethanol-gel from water hyacinth cellulose. It can be
concluded that ethanol-gel cannot be economically produced using water hyacinth as feedstock.
Chemical and enzymatic extraction of water from the feedstock, which is stems and leaves or roots,
showed that the highest yield of water was obtained using a combination of Celluclast 1.5 L, Pectinex
Ultra SP-L and additional de-ionised water. A yield of 0.89 ± 0.01 gwater/gwater in biomass was realised. This
is, however, only 0.86 wt% higher than the highest yield obtained (0.87 ± 0.01 gwater/gwater in biomass)
using only Pectinex Ultra SP-L and de-ionised water. It is recommended to use only Pectinex Ultra
SP-L and de-ionised water at a pH of 3.5 and a temperature of 40°C. Using one enzyme instead of
two reduces operating costs and simplifies the chemical extraction process. The extracted water, both filtered and unfiltered, was not found to be suitable for domestic use
without further purification to reduce the total dissolved solids (TDS), potassium and manganese
levels. Both the unfiltered and filtered water were, however, found to be suitable for industrial and
agricultural purposes, except for the high TDS levels. If the TDS and suspended particle level can be
reduced, the extracted water would be suitable for domestic, industrial and agricultural use.
The potential fermentation of the sugars derived from the water hyacinth, using ultrasonic
pretreatment, was investigated. Indirect ultrasonic treatment (ultrasonic bath) proved to be a better
pretreatment method than direct sonication (ultrasonic probe). The optimum sugar yield for the
ultrasonic bath pretreatment with 5% NaOH was found to be 0.15 g sugar/g biomass (0.47 g sugar/g
available sugar) using an indirect sonication energy input of 27 kJ/g biomass. The optimum sugar
yield is lower than those reported in other studies using different pretreatment methods.
Theoretically a maximum of 0.24 g ethanol can be obtained per g available sugar. This relates to an
ethanol yield of 0.08 g ethanol/kg wet biomass. The low yield implies that ethanol production from
water hyacinth is not economically feasible.
The production of bio-oil and bio-char from water hyacinth through thermochemical liquefaction of
wet hyacinth feedstock was investigated. An optimum bio-char yield of 0.55 g bio-char/g biomass
was achieved using an inert atmosphere (nitrogen) at 260°C and the stems and leaves as feedstock.
With the roots as feedstock a slightly lower optimum yield of 0.45 g bio-char/g biomass was found
using a non-reducing atmosphere (carbon monoxide) at 280°C. The bio-oil yield was too low to
accurately quantify.
As water is required during thermochemical liquefaction, it was found unnecessary to dry the
biomass to the same extent as was the case with the pretreatment and fermentation of the water
hyacinth, making this a more feasible route for biofuel production. Bio-char produced through
liquefaction of roots as the feedstock and leaves and stems as the other feedstock had a higher
heating value (HHV) of 10.89 ± 0.45 MJ/kg and 23.31 ± 0.45 MJ/kg respectively. Liquefaction of
water hyacinth biomass increased the HHV of the feedstock to a value comparable to that of low
grade coal. This implies a possible use of water hyacinth for co-gasification.
The most effective route for bio-energy production in the case of water hyacinth was found to be
thermochemical liquefaction (12.8 MJ/kg wet biomass). Due to the high production costs involved, it is recommended to only use water hyacinth as a feedstock for biofuel production if no alternative
feedstock are available. / MIng (Chemical Engineering), North-West University, Potchefstroom Campus, 2014
|
563 |
Functionalization of Upsalite® with TiO2 for UV-blocking applications / Funktionalisering av Upsalite® med TiO2 för UV-skyddande applikationerNotfors, Celina January 2016 (has links)
Inorganic UV-filters in use today often occur as nanoparticles and have a photocatalytic effect, which can be a problem since they can cause negative health effects. This is why Upsalite®, a mesoporous magnesium carbonate recently has been investigated as a UV-filter. Upsalite® itself is however not suitable as a UV-filter since it mainly protects in the UVC range and hence it needs to be complemented by other substances. The substance studied to functionalize Upsalite® in this thesis is titanium dioxide which is an inorganic UV-filter commonly used in sunscreens. In this work two different sol-gel synthesis routes of titanium dioxide have been investigated as well as a co-synthesis of Upsalite® and titanium dioxide. In the first synthesis route already synthesized Upsalite® was mixed with titanium tetra-isopropoxide and 1-propanol. The second synthesis route was a modified version of synthesis routes described in literature where methanol solvent was used and the pressure was altered by CO2. This route was explored due to its resemblance with the Upsalite® synthesis. Pressure, temperature and amount of water were varied to optimize incorporation of Upsalite® and investigate possibilities for a co-synthesis. Subsequently a co-synthesis of Upsalite® and titanium dioxide was performed that resulted in two amorphous composite materials depending on if water was added in the drying procedure or not. When mixing Upsalite® in the synthesis liquid of titanium dioxide, titanium dioxide seems to be deposited on Upsalite®. It is however difficult to determine whether the pores of Upsalite® have been completely filled or if they have collapsed. The acid catalyst HCl promotes formation to crystalline titanium dioxide but Upsalite® instead prevents it. The limited crystallization of titanium dioxide when synthesized with Upsalite® may be due to confinement in the Upsalite® pores. The UV-blocking properties of the TiO2-Upsalite® without HCl are good with an sun protection factor (SPF) of 27 for a 10 wt% blend in a lotion and an SPF of 7 for the sample with HCl. The modified synthesis route of TiO2 showed that it is possible to perform a sol-gel synthesis with a considerably lower amount of water than found in literature and that alteration of temperature and pressure during the synthesis does not affect the crystallization temperature noteworthy. The materials obtained from the co-synthesis are slightly porous, probably consisting of one or several magnesium titanium oxides and a carbonate phase and showed a transmission cutoff in between Upsalite® and titanium dioxide corresponding to an SPF of 5.
|
564 |
Fonctionnalisation anti-bactérienne passive ou active de tissus textiles par voie sol-gel ou photochimique - L'association du TiO2 et de la chimie douceMessaoud, Mouna 11 February 2011 (has links) (PDF)
Au cours de cette thèse, plusieurs approches de fonctionnalisation anti-bactérienne passive, de type"bactériostatique" utilisant des espèces hydrophobes, et active (selon un standard ISO), de type"bactéricide" utilisant des nanoparticules d'argent métallique ou des espèces à base d'ammoniumquaternaire, ont été testées sur des tissus textiles. Des solutions liquides ont été élaborées par voie sol-gelet photochimique, en association ou non. Elles ont tout d'abord été caractérisées d'un point de vuephysico-chimique, morphologique et structural, afin d'optimiser leur formulation et les caractéristiquesdes espèces en solution vis-à-vis de différents cahiers des charges industriels. Ce travail d'optimisation aen particulier conduit à des solutions stables permettant leur utilisation reproductible au cours du temps.Les solutions ont ensuite été imprégnées sur des échantillons textiles, par un dispositif simplifié de "padcoating"mis au point au cours de la thèse, afin de tester la fonction anti-bactérienne des textiles traités.Selon la nature des espèces imprégnées, l'optimisation des solutions conduit à une fonctionnalité antibactériennepassive ou active respectant l'aspect visuel du textile et ne dénaturant pas son toucher. Destests de lavage de laboratoire ou de lavage ménager en conditions réelles ont également montré unaccrochage notable des espèces imprégnées sur les textiles. Des options ont finalement été proposées pouraccroître cet accrochage afin de répondre à des conditions de lavage industriel. En conclusion, ce travail met en évidence le potentiel des approches d'élaboration par chimie douce en vue de fonctionnaliser des textiles, en permettant en particulier de proposer des méthodologies originales et simplifiées en adéquation avec des impératifs industriels.
|
565 |
CHARACTERIZATION AND GENOMIC PARTITIONING OF CHLOROPLAST RIBOSOMAL PROTEINS FROM HIGHER PLANTS (NICOTIANA, TABACUM).CAPEL, MALCOLM SEELY. January 1982 (has links)
Chloroplast and cytoplasmic ribosomes have been isolated from a number of species of the angiosperm genus Nicotiana. Ribosomal subunit and monosome proteins were separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Resultant two-dimensional electrophoretic patterns of chloroplast and cytoplasmic ribosomal proteins were processed by a computer algorithm, developed to formally compare different electrophoretic patterns by the construction of two-dimensional, conformal average electrophoretic mobility maps. The chloroplast ribosomal subunit of N. tabacum contains 22-24 distinct basic polypeptides (pI > 5) and 2-3 acidic proteins (pI < 5). The 50S chloroplast ribosomal subunit possesses at least 1 acidic and 33-35 basic proteins. 40S and 60S cytoplasmic ribosomal subunits of the same species have 26-30 and 47-50 basic polypeptides, respectively. Molecular weights of chloroplast ribosomal proteins (ChRP) and cytoplasmic ribosomal proteins (CyRP) were estimated. There was little similarity between the 2D electrophoretic patterns of ChRP and CyRP of N. tabacum. However, 2D-PAGE patterns of N. tabacum ChRP and CyRP were qualitatively isomorphous with homologous patterns of Chlamydomonas reinhardi, pea and spinach. In terms of molecular weight and electrophoretic pattern N. tabacum ChRP were found to be more closely affiliated with prokaryotic ribosomal proteins than with CyRP from the same species. ChRP were isolated from N. gossei (an Australian species) and its reciprocol interspecies hybrids with N. tabacum (denoted by: T x G and G x T). Interspecies polymorphisms between homologous N. tabacum and N. gossei ChRP were delineated by computerized mobility mapping and co-electrophoresis of radiolabeled N. tabacum ChRP with a large molar excess of N. gossei ChRP. The inheritance mode (Mendelian vs. maternal) of a number of well-defined interspecies ChRP polymorphisms was determined by co-electrophoresis of radioiodinated N. tabacum ChRP with T x G and G x T hybrid ChRP. Results indicate that at least 4 30S ChRP and 3 50S ChRP are encoded by nuclear genes. 30S ChRP from an N. tabacum line carrying a maternally-inherited streptomycin-resistance mutation (SR-1) were compared to N. tabacum 30S ChRP by mobility mapping. Two differences were established between the SR-1 and wild-type 30S ChRP average mobility maps. These findings correlate with the reduced affinity of SR-1 30S chloroplast ribosomal subunits for ('3)H-dihydrostreptomycin, and show that at least one 30S ChRP is encoded by chloroplast DNA. Preparative 2D-PAGE and reverse high performance liquid chromatography (RPHPLC) separation techniques for complex ribosomal protein mixtures were developed. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI
|
566 |
STATIONARY PHASE FORMATION FOR CHEMICALLY MODIFIED CHROMATOGRAPHIC SUPPORTS.YONKER, CLEMENT ROD. January 1982 (has links)
A new theory has been proposed for stationary phase formation of chemically modified chromatographic adsorbents. This theory consists of a model in which the bonded hydrocarbon moiety, silica substrate, and their respective solvation layers all participate in stationary phase formation. Stationary phase formation was found to be dependent on three parameters: (1) Solvent strength of the mobile phase components for the bonded organic moiety and the silica substrate; (2) the type of organic moiety covalently bound to the surface; and (3) the bound moiety density or surface coverage. Binary aqueous-organic mobile phases were investigated for LiChrosorb RP-8 and RP-18. For RP-8 the solica substrate played a more important role in stationary phase formation. Whereas, for RP-18 the longer bound hydrocarbon chain dominated stationary phase formation. With different organic modifiers in the mobile phase, the modifier with the larger solvent strength for the bound hydrocarbon was selectively enriched in the stationary phase solvation layer for RP-18. Ternary mobile phase systems were also investigated for RP-18. The second modifier was found to exert a large influence on stationary phase formation. Temperature's role in stationary phase formation was studied with a ternary mobile phase of 40/45/15 methanol, water, THF with RP-18. In this specific case, changing the temperature of the system did not impact on stationary phase formation. A new type of column structure was investigated. This structure involved a totally porous silica gel as compared to a column packed with totally porous silica microparticles. These silica gel columns were characterized both thermodynamically and kinectically. Under Normal Phase chromatographic conditions the silica gel column was found to have a higher selectivity but poorer efficiency for the separation of aniline from nitrobenzene than a packed column. The silica gel can be chemically modified by silane reaction and its bonded phase characteristics were investigated. The gel also showed ion-exchange properties which were investigated using sodium nitrite.
|
567 |
POLYMER-MEDIATED ELECTROCHEMISTRY IN SOL-GEL THIN FILMS AND SPECTROELECTROCHEMICAL CHARACTERIZATION OF MOLECULAR ADLAYERS ON INDIUM-TIN OXIDE ELECTRODE SURFACESDoherty, Walter John January 2005 (has links)
This research focuses on the development of spectroelectrochemical sensor formats based on thin film molecular architectures and electrochemical detection of sol-gel encapsulated macromolecular recognition elements. To achieve this goal, there were two major objectives: 1) to demonstrate and characterize conductive polymer grown electrochemically in porous sol-gel thin films with specific regard to the ability of the polymer to mediate charge transfer between sol-gel encapsulated molecules and the electrode surface, and 2) to develop a means to probe the spectroscopic properties of highly absorbent thin films as a function of applied potential. Toward the first objective, diffusion of a derivatized thiophene monomer into a sol-gel thin film and subsequent electropolymerization at an underlying indium-tin oxide (ITO) surface was found to produce a conductive network of polymer capable of mediating electron transfer from encapsulated redox centers in the bulk of the sol-gel film to the electrode surface. At high levels of polymer loading, emergent, sol-gel templated, polymeric structures are formed which extend from the sol-gel surface into the electrolyte solution and exhibit electrochemical properties of ultramicroelectrode arrays. To achieve the second objective, a polychromatic, electroactive attenuated total internal reflectance (EA-ATR) instrument was developed consisting of an indium-tin oxide (ITO) coated glass internal reflection element (IRE). In addition to a high degree of surface sensitivity relative to transmission geometries, this geometry affords acquisition of absorption anisotropy information, via polarization of the incident beam, to determine the orientation distribution in molecular adlayers. To demonstrate these abilities, the orientational distribution of monolayer and bilayer films of perylene and copper phthalocyanine derivatives, respectively, was determined. Furthermore, it was demonstrated that the EA-ATR could be used in a potential-modulated mode (PM-ATR) to study the kinetics of electro-optical switching in conductive copolymer thin films.
|
568 |
Design of metal oxide catalystsGetton, Frederick P. January 2000 (has links)
No description available.
|
569 |
Development of new fluorescent silica and multifunctional nanoparticles for bio-imaging and diagnosticsLemelle, Arnaud January 2011 (has links)
Silica nanoparticles are effective fluorophore carriers with high potential in imaging, diagnostics, and therapy. The particles are resistant to drastic change of environmental conditions (pH, temperature etc.) and insulate the dyes so as to protect them from photobleaching. Silica chemistry is also versatile and affords an easy modification of the particle composition and surface to integrate targeting ligands or to integrate other nanoparticles. Regardless of their advantages, there exists a lack of dye diversity in the literature that is connected to a low affinity for potential tools for biology and medicineThis thesis describes the development of an alternative method for the synthesis of fluorescent silica nanoparticles and their modification to incorporate iron oxide and gold. cont/d.
|
570 |
Characterization of Methyltrimethoxysilane Sol-Gel Polymerization and the Resulting Aerogels.Dong, Hanjiang 08 1900 (has links)
Methyl-functionalized porous silica is of considerable interest as a low dielectric constant film for semiconductor devices. The structural development of these materials appears to affect their gelation behaviors and impact their mechanical properties and shrinkage during processing. 29Si solution NMR was used to follow the structural evolution of MTMS (methyltrimethoxysilane) polymerization to gelation or precipitation, and thus to better understand the species that affect these properties and gelation behaviors. The effects of pH, water concentration, type of solvents, and synthesis procedures (single step acid catalysis and two-step acid/base catalysis) on MTMS polymerization were discussed. The reactivity of silicon species with different connectivity and the extent of cyclization were found to depend appreciably on the pH value of the sol. A kinetic model is presented to treat the reactivity of both silicon species involved in condensations separately based on the inductive and steric effects of these silicon species. Extensive cyclization in the presence of acid, which was attributed to the steric effects among numerous reaction pathways for the first time, prevents MTMS gelation, whereas gels were obtained from the two-step method with nearly random condensations. The experimental degree of condensation (DC) at the gel point using the two-step procedure was determined to be 0.86, which is considerably higher than that predicted by the current accepted theories. Both chemical and physical origins of this high value were suggested.
Aerogels dried by supercritical CO2 extraction were characterized by FTIR, 13C and 29Si solid-state NMR and nitrogen sorption. The existence of three residual groups (Si-OH, Si-OCH3, and Si-OC2H5) was confirmed, but their concentrations are very low compared to silica aerogels. The low concentrations of the residual groups, along with the presence of Si-CH3, make MTMS aerogels permanently hydrophobic. To enhance applicability, MTMS aerogels were successfully prepared that demonstrated shrinkage less than 10% after supercritical drying; proving that the rigidity of the gel network is not the sole factor, suggesting in the literature, to cause the huge shrinkage in many hybrid aerogels reported. An important finding of this work is that MTMS aerogels can be prepared without tedious solvent exchange and surface modification if the molar ratio of water/MTMS increases to 8, substantially reducing the cost of aerogel production. This result was attributed to MTMS's fully condensation and low concentrations of ring species.
|
Page generated in 0.0385 seconds