81 |
Canalização: fenótipos robustos como consequência de características da rede de regulação gênica / Canalization: phenotype robustness as consequence of characteristics of the gene regulatory networkVitor Hugo Louzada Patricio 20 April 2011 (has links)
Em sistemas biológicos, o estudo da estabilidade das redes de regulação gênica é visto como uma contribuição importante que a Matemática pode proporcionar a pesquisas sobre câncer e outras doenças genéticas. Neste trabalho, utilizamos o conceito de ``canalização\'\' como sinônimo de estabilidade em uma rede biológica. Como as características de uma rede de regulação canalizada ainda são superficialmente compreendidas, estudamos esse conceito sob o ponto de vista computacional: propomos um modelo matemático simplificado para descrever o fenômeno e realizamos algumas análises sobre o mesmo. Mais especificamente, a estabilidade da maior bacia de atração das redes Booleanas - um clássico paradigma para a modelagem de redes de regulação - é analisada. Os resultados indicam que a estabilidade da maior bacia de atração está relacionada com dados biológicos sobre o crescimento de colônias de leveduras e que considerações sobre a interação entre as funções Booleanas e a topologia da rede devem ser realizadas conjuntamente na análise de redes estáveis. / In biological systems, the study of gene regulatory networks stability is seen as an important contribution that Mathematics can make to cancer research and that of other genetic diseases. In this work, we consider the concept of ``canalization\'\' as a consequence of stability in gene regulatory networks. The characteristics of canalized regulatory networks are superficially understood. Hence, we study the canalization concept under a computational framework: a simplified model is proposed to describe the phenomenon using Boolean Networks - a classical paradigm to modeling regulatory networks. Specifically, the stability of the largest basin of attraction in gene regulatory networks is analyzed. Our results indicate that the stability of the largest basin of attraction is related to biological data on growth of yeast colonies, and that thoughts about the interaction between Boolean functions and network topologies must be given in the analysis of stable networks.
|
82 |
Redes de regulação gênica do metabolismo de sacarose em cana-de-açúcar utilizando redes bayesianas / Gene regulatory networks of the sucrose metabolism in sugarcane using bayesian networksMurad, Natália Faraj, 1989- 23 August 2018 (has links)
Orientador: Renato Vicentini dos Santos / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-23T02:31:35Z (GMT). No. of bitstreams: 1
Murad_NataliaFaraj_M.pdf: 15243579 bytes, checksum: a5e50145fbdf4bddfb2ea99313b17991 (MD5)
Previous issue date: 2013 / Resumo: A cana-de-açúcar é uma das mais importantes plantas cultivadas no Brasil, que é o maior produtor e exportador mundial. Seu valor econômico é devido principalmente a sua capacidade de estocar sacarose nos colmos. Os padrões de expressão gênica podem regular processos de desenvolvimento da planta e influenciar no acúmulo de sacarose em tecidos de reserva. A regulação desses padrões ocorre através de complexos sistemas de interações entre muitos genes e seus produtos, resultando em uma complexa rede de regulação gênica. Modelos gráficos probabilísticos têm sido amplamente utilizados para inferência e representação dessas redes. Dentre eles, as redes bayesianas são o principal por ser considerado o método mais flexível e também requererem um número reduzido de parâmetros para a descrição do modelo. Sendo assim, este estudo utilizou a metodologia de redes bayesianas para inferência de interações regulatórias entre genes de metabolismo e sinalização de sacarose a partir de dados de expressão gênica, obtidos através de microarrays, disponíveis no Gene Expression Omnibus (GEO). As redes foram obtidas através de softwares para inferência de redes e então analisadas quanto aos genes que as compõem e padrões de expressão. Os genes foram agrupados em clusters considerando-se seus padrões de coexpressão. Os genes mais representados no cluster da enzima sacarose fosfato sintase (SPS) em cana são genes de relacionados à tradução, ligação ao DNA e genes de função desconhecida, enquanto os menos representados são de fotossíntese, resposta a hormônios, e outros eventos metabólicos. A rede do cluster da SPS apresentou sete genes principais (hubs) que aparentam ter um importante papel dentro do cluster. Foi obtida também uma rede considerando genes selecionados em estudos com experimentos de microarrays previamente publicados. Uma dessas redes possui 136 genes e apresentou 6 genes principais, sendo que a maioria deles é de fotossíntese. Na rede considerando genes diferencialmente expressos nesses experimentos (265 genes), genes que pertencem à mesma categoria funcional tenderam a sofrer regulação por um único gene em comum, formando grupos de funções semelhantes em cada hub / Abstract: Sugarcane is one of the most important plants cultivated in Brazil which is the world's largest producer and exporter. Its economic yield is mainly due to its high sucrose content. The patterns of gene expression may regulate processes of plant development and influence the accumulation of sucrose by storage tissues. The regulation of these patterns occurs through complex systems of interactions between many genes and their products, resulting in a complex gene regulatory network. Probabilistic graphical models have been widely used for inference and representation of these networks. Among them, Bayesian networks are the main for being considered to be the most flexible method and also requiring a reduced number of parameters to the model description. Then, this work has used the Bayesian network methodology for inference of regulatory interactions between signaling and sucrose metabolism genes from gene expression data, obtained from microarrays, available on Gene Expression Omnibus (GEO). Networks were generated by networks inference softwares, and then analyzed observing their composing genes and expression patterns. The genes were grouped considering their coexpression patterns. The most represented genes in the sacarose phosphate syntase (SPS) cluster are related with translation, DNA biding and unknown function genes while the least represented are of photosynthesis, hormone response and other metabolic events. The SPS cluster network presented 7 main hubs that seem to play an important role in the cluster. It was also obtained a network considering genes selected from studies with microarray experiments previously published. One of these gene networks has 136 genes and it presented 6 main genes, being the most of them are from photosynthesis. In the network considering differential expressed in this experiments, genes that are from the same functional category tended to suffer regulation for one unique common gene, forming groups of genes with similar function on each hub / Mestrado / Genetica Vegetal e Melhoramento / Mestra em Genética e Biologia Molecular
|
83 |
Systèmes stochastiques en interaction en biophysique : immunologie et développement / Stochatic interacting systems in biophysics : immunology and developmentDesponds, Jonathan 22 September 2016 (has links)
Nous présentons deux problèmes de biologie faisant appel à un traitement de données et des modèles issus de la physique statistique : la dynamique des populations en immunologie et la régulation génétique dans le développement embryonnaire. En immunologie, nous étudions le problème de la sélection somatique dans le système immunitaire adaptatif: la sélection cellulaire et la compétition qui s’y opèrent, constituant un système quasi Darwinien au sein de l’organisme. Dans un premier temps, nous considérons différentes hypothèses surla dynamique sélective : signaux déclenchant la division ou la mort cellulaire par liaison antigénique ou par cytokines, paramètres dynamiques de division, mort et fluctuations environnementales. Nous explorons leur influence sur la taille des clones dont la distribution à queue lourde a été observée à travers les espèces et les types de cellules. Deux familles de modèles émergent : un premier dans lequel le bruit est cohérent à l’échelle du clone et un second dans lequel le bruit varie de cellule à cellule. Nous montrons dans quelle mesure la distribution de taille de clones permet de déterminer le meilleur modèle et relions la forme de la distribution ainsi que l’exposant apparent de la loi de puissance aux paramètres biologiques. Dans un second temps, nous explorons les caractéristiques du réseau complexe et aléatoire formé par les clones et les antigènes : dimension, adjacence, dynamique. Nous nous intéressons à l’effet de la sélection dans le temps et à la vitesse d’évolution des clones.La deuxième partie de cette thèse est consacrée au développement embryonnaire. Dans l’embryon, il est essentiel pour le noyau de déterminer sa position avec une grande précision pour orienter la différentiation et construire un organisme structuré viable. Cette information positionnelle est acquise, transmise et conservée par la diffusion de protéines et l’activa- tion de circuits génétiques.Plus précisément, la formation de l’axe antéropostérieur chez la Drosophile est déterminée entre autres par l’activation du gène hunchback par la protéine Bicoid. Nous analysons des données issues d’expériences d’imagerie fluorescente dynamique dans les premiers cycles cellulaires de l’embryon. Nous construisons un modèle spécifique permettant d’analyser la fonction d’autocorrélation des traces temporelles de fluorescence qui prend en compte toutes les difficultés biologiques et expérimentales (bruit, calibration traces courtes, structure du gène artificiel) pour extraire les paramètre dynamiques d’activation de hunchback. Nous examinons différentes dynamiques potentielles (poisonnienne, markovienne ou non markovienne) et leur implication pour l’information dont la cellule dispose sur sa position ainsi que la précision de la lecture du gradient de Bicoid. / This work presents two problems of biology requiring data analysis and models from statistical mechanics: population dynamics in immunology and gene regulation in embryo development. In immunology I study the problem of somatic evolution in the adaptive immune system: selection of and competition among cells that form a close-to-Darwinian system within one individual. First, I consider different potential hypotheses for selective dynamics: division and death signals through antigen binding or cytokines, dynamical parameters for division, death and fluctuations of the environment. I explore their impact on clone sizes. Experimentally, these clone sizes show heavy tail distributions for different species and differentpools of cells. Two families of models emerge: models where noise is consistent at the level of the clone and models where it varies from cell to cell. I show how clone size distributions help discriminate between these models and relate the shape of the distribution and the exponent of the power law to biological parameters. Second, I explore the specifics of the complex stochastic network of clones and antigens: its dimensionality, connectivity and dynamics. I study the effect of selection at different time scales and the speed of evolution of the clones. The second part of this dissertation concerns embryo development. In the fly embryo, it is crucial that nuclei can evaluate their position within the organism accurately to determine cell fate and build a healthy organism. This positional information is obtained, transferred, and maintained through diffusion of proteins and activation of genetic networks. More specifically, the patterning of the antero-posterior axis in drosophila requires the hunchback gene, activated by the Bicoid protein. I analyze data from fluorescent live imaging in the early cell cycles of the embryo. I build a tailor-made model to analyze autocorrelation functions of fluorescence time traces overcoming all biological and experimental challenges (noise, calibration, short traces, transgene construct) to extract the parameters of hunchback activation. I examine several potential types of dynamics for gene switiching (Poisson, Markovian or non-Markovian) and predict their impact on positional information and the accuracy of bicoid gradient readout.
|
84 |
Computational Interrogation of Transcriptional and Post-Transcriptional Mechanisms Regulating Dendritic DevelopmentBhattacharya, Surajit 08 August 2017 (has links)
The specification and modulation of cell-type specific dendritic morphologies plays a pivotal role in nervous system development, connectivity, structural plasticity, and function. Regulation of gene expression is controlled by a wide variety of cellular and molecular mechanisms, of which two major types are transcription factors (TFs) and microRNAs (miRNAs). In Drosophila, dendritic complexity of dendritic arborization (da) sensory neurons of the peripheral nervous system are known to be regulated by two transcription factors Cut and Knot, although much remains unknown about the molecular mechanisms and regulatory networks via which they regulate the final arbor shape through spatio-temporal modulation of dendritic development and dynamics. Here we use bioinformatics analysis of transcriptomic data to identify putative genomic targets of these TFs with a particular emphasis on those that effect neuronal cytoskeletal architecture. We use transcriptomic, as well as data from various genomic and protein interaction databases, to build a weighted functional gene regulatory network for Knot, to identify the biological pathways and downstream genes that this TF regulates. To corroborate bioinformatics network predictions, knot putative targets, which classify into neuronal and cytoskeletal functional groups, have been experimentally validated by in vivo genetic perturbations to elucidate their role in Knot-mediated Class IV (CIV) dendritogenesis. MicroRNAs (miRNAs) have emerged as key post-transcriptional regulators of gene expression, however identification of biologically-relevant target genes for this epigenetic regulatory mechanism remains a significant challenge. To address this knowledge gap, we have developed a novel R based tool, IntramiR-ExploreR, that facilitates integrated discovery of miRNA targets by incorporating target databases and novel target prediction algorithm to arrive at high confidence intragenic miRNA target predictions. We have explored the efficacy of this tool using D.melanogaster as a model organism for bioinformatics analyses and functional validation, and identified targets for 83 intragenic miRNAs. Predicted targets were validated, using in vivo genetic perturbation. Moreover, we are constructing interaction maps of intragenic miRNAs focusing on neural tissues to uncover regulatory codes via which these molecules regulate gene expression to direct cellular development.
|
85 |
Comparison of protein binding microarray derived and ChIP-seq derived transcription factor binding DNA motifsHlatshwayo, Nkosikhona Rejoyce January 2015 (has links)
Transcription factors (TFs) are biologically important proteins that interact with transcription machinery and bind DNA regulatory sequences to regulate gene expression by modulating the synthesis of the messenger RNA. The regulatory sequences comprise of short conserved regions of a specific length called motifs . TFs have very diverse roles in different cells and play a very significant role in development. TFs have been associated with carcinogenesis in various tissue types, as well as developmental and hormone response disorders. They may be responsible for the regulation of oncogenes and can be oncogenic. Consequently, understanding TF binding and knowing the motifs to which they bind is worthy of attention and research focus. Various projects have made the study of TF binding their main focus; nevertheless, much about TF binding remains confounding. Chromatin immunoprecipitation in conjunction with deep sequencing (ChIP-seq) techniques are a popular method used to investigate DNA-TF interactions in vivo. This procedure is followed by motif discovery and motif enrichment analysis using relevant tools. Protein Binding Microarrays (PBMs) are an in vitro method for investigating DNA-TF interactions. We use a motif enrichment analysis tools (CentriMo and AME) and an empirical quality assessment tool (Area under the ROC curve) to investigate which method yields motifs that are a true representation of in vivo binding. Motif enrichment analysis: On average, ChIP-seq derived motifs from the JASPAR Core database outperformed PBM derived ones from the UniPROBE mouse database. However, the performance of motifs derived using these two methods is not much different from each other when using CentriMo and AME. The E-values from Motif enrichment analysis were not too different from each other or 0. CentriMo showed that in 35 cases JASPAR Core ChIP-seq derived motifs outperformed UniPROBE mouse PBM derived motifs, while it was only in 11 cases that PBM derived motifs outperformed ChIP-seq derived motifs. AME showed that in 18 cases JASPAR Core ChIP-seq derived motifs did better, while only it was only in 3 cases that UniPROBE motifs outperformed ChIP-seq derived motifs. We could not distinguish the performance in 25 cases. Empirical quality assessment: Area under the ROC curve values computations followed by a two-sided t-test showed that there is no significant difference in the average performances of the motifs from the two databases (with 95% confidence, mean of differences=0.0088125 p-value= 0.4874, DF=47) .
|
86 |
Derivation and Use of Gene Network Models to Make Quantitative Predictions of Genetic Interaction DataPhenix, Hilary January 2017 (has links)
This thesis investigates how pairwise combinatorial gene and stimulus perturbation experiments are conducted and interpreted. In particular, I investigate gene perturbation in the form of knockout, which can be achieved in a pairwise manner by SGA or CRISPR/Cas9 methods. In the present literature, I distinguish two approaches to interpretation: the calculation of stimulus and gene interactions, and the identification of equality among phenotypes measured for distinct perturbation conditions. I describe how each approach has been applied to derive hypotheses about gene regulatory networks. I identify conflicts and uncertainties in the assumptions allowing these derivations, and explore theoretically and experimentally approaches to improve the interpretation of genetic interaction data. I apply the approaches to a well-studied gene regulatory branch of the DNA damage checkpoint (DDC) pathway of Saccharomyces cerevisiae, and confirm the known order of genes within this pathway. I also describe observations that seem inconsistent with this pathway structure. I explore this inconsistency experimentally and discover that high concentrations of the DNA alkylating drug methyl methanesulfonate cause a cell division arrest program distinct from a G1 or G2/M checkpoint or from DNA damage adaptation, that resembles an endocycle.
|
87 |
Coeficientes de determinação, predição intrinsicamente multivariada e genética / Coefficient of determination, intrinsically multivariate and genetic predictionCarlos Henrique Aguena Higa 21 December 2006 (has links)
Esta dissertação de mestrado tem como finalidade descrever o trabalho realizado em uma pesquisa que envolve a análise de expressões gênicas provenientes de microarrays com o objetivo de encontrar genes importantes em um organismo ou em uma determinada doença, como o câncer. Acreditamos que a descoberta desses genes, que chamamos aqui de genes de predição intrinsicamente multivariada (genes IMP), possa levar a descobertas de importantes processos biológicos ainda não conhecidos na literatura. A busca por genes IMP foi realizada em conjunto com estudos de modelos e conceitos matemáticos e estatísticos como redes Booleanas, cadeias de Markov, Coeficiente de Determinação (CoD), Classificação em análise de expressões gênicas e métodos de estimação de erro. No modelo de redes Booleanas, introduzido na Biologia por Kauffman, as expressões gênicas são quantizadas em apenas dois níveis: \"ligado\'\' ou \"desligado\'\'. O nível de expressão (estado) de cada gene, está relacionado com o estado de alguns outros genes através de uma função lógica. Adicionando uma perturbação aleatória a este modelo, temos um modelo mais geral conhecido como redes Booleanas com perturbação. O sistema dinâmico representado pela rede é uma cadeia de Markov ergódica e existe então uma distribuição de probabilidade estacionária. Temos a hipótese de que os experimentos de microarray seguem esta distribuição estacionária. O CoD é uma medida normalizada de quanto a expressão de um gene alvo pode ser melhor predita observando-se a expressão de um conjunto de genes preditores. Uma determinada configuração de CoDs caracteriza um gene alvo como sendo um gene IMP. Podemos trabalhar não somente com genes alvo, mas também com fenótipos alvo, onde o fenótipo de um sistema biológico poderia ser representado por uma variável aleatória binária. Por exemplo, podemos estar interessados em saber quais genes estão relacionados ao fenótipo de vida/morte de uma célula. Como a distribuição de probabilidade das amostras de microarray é desconhecida, o estudo dos CoDs é feito através de estimativas. Entre os métodos de estimação de erro estudados para este propósito podemos citar: Holdout, Resubstituição, Cross-validation, Bootstrap e .632 Bootstrap. Os métodos foram implementados para calcular os CoDs, permitindo então a busca por genes IMP. Os programas implementados na pesquisa foram usados em conjunto com uma pesquisa realizada pelo Prof. Dr. Hugo A. Armelin do Instituto de Química da USP. Este estudo em particular envolve a busca de genes importantes relacionados à morte de células tumorigênicas de camundongo disparada por FGF2 (Fibroblast Growth Factor 2). Nesta pesquisa observamos sub-redes de genes envolvidos no processo biológico em questão e também encontramos genes que podem estar relacionados ao fenômeno de morte das células de camundongo ou que estão, de fato, participando de alguma via disparada pelo FGF2. Esta abordagem de análise de expressões gênicas, juntamente com a pesquisa realizada pelo Prof. Armelin, resulta em uma metodologia para buscas de genes envolvidos em novos mecanismos de células tumorigênicas, ativados pelo FGF2. Na realidade esta metodologia pode ser aplicada em qualquer processo biológico de interesse científico, desde que seja possível modelar o problema proposto no contexto de redes Booleanas, coeficientes de determinação e genes IMP. / This Master\'s degree dissertation describes a research that involves an analysis of gene expression data from microarray experiments with the purpose to find important genes in certain organisms or diseases such as cancer. We believe that these type of genes, called intrinsically multivariately predictive genes (IMP genes), can lead to the discovery of important biological process that are unknown in the literature. The search for IMP genes was done with the study of mathematical and statistical models such as Boolean Networks, Markov Chains, Coefficient of Determination (CoD), Classification and Error Estimation Methods. In the Boolean network model, introduced in Biology by Kauffman, the gene expression is quantized in only two levels: ON and OFF. The expression level (state) of each gene is related with the state of some other genes through a logical function. Adding a random perturbation to this model, we have a more general Boolean-type model called Boolean network with perturbation. The dynamical system represented by this network is an ergodic Markov chain and thereby it possesses a steady-state distribution. We have the hypothesis that the microarray experiments follow this steady-state distribution. The CoD is a normalized measure of how much a gene expression of a target gene can be better predicted observing the expression of a set of predictor genes. A certain configuration of CoDs characterizes a target gene as an IMP gene. We can deal not only with target genes, but also with target phenotypes, where the phenotype of a biological system could be represented by a binary random variable. For example, we could be interested in knowing which genes are related to a life/death cell phenotype. Since the joint probability distribution of the gene expressions is unknown, the CoDs must be computed through estimated values. Among the error estimation methods studied we can cite: Holdout, Resubstitution, Cross-validation, Bootstrap and .632 Bootstrap. Those methods were implemented as a software in order to compute the CoDs and thereby allowing us to search for IMP genes. The software we implemented in this research was used within a research developed by Professor Dr. Hugo A. Armelin from the Instituto de Química - University of Sao Paulo. This particular research involves the search for important genes related to the death of tumorigenic mouse cells triggered by FGF2 (Fibroblast Growth Factor 2). From this research cooperation, we built some gene subnetworks involved in the target biological process and we found some genes that could be related to the death phenotype of mouse cells. This approach of gene expression analysis, together with the research developed by Professor Armelin, results in a methodology to search for important genes that could be involved in new mechanisms of tumorigenic cells triggered by FGF2. Actually, this methodology can be applied to any biological process of scientific interest, if one can model the proposed problem in the context of Boolean Networks, Coefficient of Determination and IMP genes.
|
88 |
Modélisation de phénomènes biologiques complexes : application à l'étude de la réponse antigénique de lymphocytes B sains et tumoraux / Modeling complex biological phenomena : application to the study of the antigenic response of healthy and tumor B lymphocytesJung, Nicolas 03 December 2014 (has links)
La biologie des systèmes complexes est le cadre idéal pour l'interdisciplinarité. Dans cette thèse, les modèles et les théories statistiques répondent aux modèles et aux expérimentations biologiques. Nous nous sommes intéressés au cas particulier de la leucémie lymphoïde chronique à cellules B, qui est une forme de cancer des cellules du sang. Nous avons commencé par modéliser le programme génique tumoral sous-jacent à cette maladie et nous l'avons comparé au programme génique d'individus sains. Pour ce faire, nous avons introduit la notion de réseau en cascade. Nous avons ensuite démontré notre capacité à contrôler ce système complexe, en prédisant mathématiquement les effets d'une expérience d'intervention consistant à inhiber l'expression d'un gène. Cette thèse s'achève sur la perspective d'une modulation orientée, c'est-à-dire le choix d'expériences d'intervention permettant de « reprogrammer » le programme génique tumoral vers un état normal. / System biology is a well-suited context for interdisciplinary. In this thesis, statistical models and theories closely meet biological models and experiments. We focused on a specific complex system model: the chronic B-cell chronic lymphocytic leukemia disease which is a cancer of the blood cells. We started by modeling the genetic program which underlies this disease and we compared it to the healthy one. This conduced us to introduce the concept of cascade networks. We then showed our ability to control this complex system by predicting with our mathematical model the effects of a gene inhibition experiment. This thesis ends with the perspective of oriented modulation, i.e. targeted interventional experiments on genes allowing to “reprogram” the cancerous genetic program toward a healthy normal state.
|
89 |
Development of Gene Regulatory Elements for Biosensing ApplicationsBates, Mallory N. 01 June 2022 (has links)
No description available.
|
90 |
Parameter optimization of linear ordinary differential equations with application in gene regulatory network inference problems / Parameteroptimering av linjära ordinära differentialekvationer med tillämpningar inom inferensproblem i regulatoriska gennätverkDeng, Yue January 2014 (has links)
In this thesis we analyze parameter optimization problems governed by linear ordinary differential equations (ODEs) and develop computationally efficient numerical methods for their solution. In addition, a series of noise-robust finite difference formulas are given for the estimation of the derivatives in the ODEs. The suggested methods have been employed to identify Gene Regulatory Networks (GRNs). GRNs are responsible for the expression of thousands of genes in any given developmental process. Network inference deals with deciphering the complex interplay of genes in order to characterize the cellular state directly from experimental data. Even though a plethora of methods using diverse conceptual ideas has been developed, a reliable network reconstruction remains challenging. This is due to several reasons, including the huge number of possible topologies, high level of noise, and the complexity of gene regulation at different levels. A promising approach is dynamic modeling using differential equations. In this thesis we present such an approach to infer quantitative dynamic models from biological data which addresses inherent weaknesses in the current state-of-the-art methods for data-driven reconstruction of GRNs. The method is computationally cheap such that the size of the network (model complexity) is no longer a main concern with respect to the computational cost but due to data limitations; the challenge is a huge number of possible topologies. Therefore we embed a filtration step into the method to reduce the number of free parameters before simulating dynamical behavior. The latter is used to produce more information about the network’s structure. We evaluate our method on simulated data, and study its performance with respect to data set size and levels of noise on a 1565-gene E.coli gene regulatory network. We show the computation time over various network sizes and estimate the order of computational complexity. Results on five networks in the benchmark collection DREAM4 Challenge are also presented. Results on five networks in the benchmark collection DREAM4 Challenge are also presented and show our method to outperform the current state of the art methods on synthetic data and allows the reconstruction of bio-physically accurate dynamic models from noisy data. / I detta examensarbete analyserar vi parameteroptimeringsproblem som är beskrivna med ordinära differentialekvationer (ODEer) och utvecklar beräkningstekniskt effektiva numeriska metoder för att beräkna lösningen. Dessutom härleder vi brusrobusta finita-differens approximationer för uppskattning av derivator i ODEn. De föreslagna metoderna har tillämpats för regulatoriska gennätverk (RGN). RGNer är ansvariga för uttrycket av tusentals gener. Nätverksinferens handlar om att identifiera den komplicerad interaktionen mellan gener för att kunna karaktärisera cellernas tillstånd direkt från experimentella data. Tillförlitlig nätverksrekonstruktion är ett utmanande problem, trots att många metoder som använder många olika typer av konceptuella idéer har utvecklats. Detta beror på flera olika saker, inklusive att det finns ett enormt antal topologier, mycket brus, och komplexiteten av genregulering på olika nivåer. Ett lovande angreppssätt är dynamisk modellering från biologiska data som angriper en underliggande svaghet i den för tillfället ledande metoden för data-driven rekonstruktion. Metoden är beräkningstekniskt billig så att storleken på nätverket inte längre är huvudproblemet för beräkningen men ligger fortfarande i databegränsningar. Utmaningen är ett enormt antal av topologier. Därför bygger vi in ett filtreringssteg i metoder för att reducera antalet fria parameterar och simulerar sedan det dynamiska beteendet. Anledningen är att producera mer information om nätverkets struktur. Vi utvärderar metoden på simulerat data, och studierar dess prestanda med avseende på datastorlek och brusnivå genom att tillämpa den på ett regulartoriskt gennätverk med 1565-gen E.coli. Vi illustrerar beräkningstiden över olika nätverksstorlekar och uppskattar beräkningskomplexiteten. Resultat på fem nätverk från DREAM4 är också presenterade och visar att vår metod har bättre prestanda än nuvarande metoder när de tillämpas på syntetiska data och tillåter rekonstruktion av bio-fysikaliskt noggranna dynamiska modeller från data med brus.
|
Page generated in 0.091 seconds