• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 7
  • 4
  • 4
  • 3
  • 1
  • Tagged with
  • 62
  • 62
  • 62
  • 18
  • 12
  • 11
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Bio-relation Discovery and Sparse Learning

Shi, Yi Unknown Date
No description available.
22

Biotagging, a genetically encoded toolkit in the zebrafish, reveals novel non-coding RNA players during neural crest and myocardium development

Chong, Vanessa January 2017 (has links)
Complex multicellular organisms are composed of at least 200 cell types, which contain the same DNA "black box" of genetic information. It is the precise regime according to which they express their genes, exquisitely controlled by gene regulatory circuits, that defines their cellular identity, morphology and function. We have developed an in vivo biotinylation method that uses genetically encoded components in zebrafish, termed biotagging, for genome-wide regulatory analysis of defined embryonic cell populations. By labelling selected proteins in specific cell types, biotagging eliminates background inherent to analyses of complex embryonic environments via highly stringent biochemical procedures and targeting of specific interactions without the need for cell sorting. We utilised biotagging to characterise the in vivo translational landscape on polysomes as well as the transcriptional regulatory landscape in nuclei of migratory neural crest cells, which intermix with environing tissues during their migration. Our migratory neural crest translatome presented both known and novel players of the neural crest gene regulatory network. An in depth look into the active nuclear transcriptome uncovered a complex world of non-coding regulatory RNAs that potentially specify migratory neural crest identity and present evidence of active bidirectional transcription on regions of open chromatin that include putative cis-regulatory elements. Analysis of our transcribed cis-regulatory modules functionally links these elements to known genes that are key to migratory neural crest function and its derivatives. We also identified a novel cohort of circular RNAs enriched at regions of tandem duplicated genes. Last but not least, we recovered developmentally regulated long non-coding RNAs and transcribed transposable elements. To functionally dissect the biological roles of these factors, we have built two Ac/Ds-mediated in vivo toolkits for efficient screening of putative enhancers and for CRISPR/Cas9-based transcriptional modulation. Overall, our methods and findings present a comprehensive view of the active coding and non-coding landscapes of migratory neural crest on a genome-wide scale that refine the current regulatory architecture underlying neural crest identity.
23

Inférence de réseaux de régulation de gènes à partir de données dynamiques multi-échelles / Gene regulatory network inference from dynamic multi-scale data

Bonnaffoux, Arnaud 12 October 2018 (has links)
L'inférence des réseaux de régulation de gènes (RRG) à partir de données d'expression est un défi majeur en biologie. L’arrivée des technologies de mesure de transcriptomique à l’échelle de la cellule a suscité de nombreux espoirs, mais paradoxalement elles montrent une nouvelle complexité du problème d’inférence des RRG qui limite encore les approches existantes. Nous avons commencé par montrer, à partir de données d'expression en cellules uniques acquises sur un modèle aviaire de différenciation érythrocytaire, que les RRG sont des systèmes stochastiques à l'échelle de la cellule et qu'il y a une évolution dynamique de cette stochasticité au cours du processus de différenciation (Richard et al, PLOS Comp.Biol., 2016). C'est pourquoi nous avons développé par la suite un modèle de RRG mécaniste qui inclus cette stochasticité afin d'exploiter au maximum l'information des données expérimentales à l'échelle de la cellule (Herbach et al, BMC Sys.Biol., 2017). Ce modèle décrit les interactions entre gènes comme un couplage de processus de Markov déterministes par morceaux. En régime stationnaire une formule explicite de la distribution jointe est dérivée du modèle et peut servir à inférer des réseaux simples. Afin d'exploiter l'information dynamique et d'intégrer d'autres données expérimentales (protéomique, demi-vie des ARN), j’ai développé à partir du modèle précédent une approche itérative, intégrative et parallèle, baptisée WASABI qui est basé sur le concept de vague d'expression (Bonnaffoux et al, en révision, 2018). Cette approche originale a été validée sur des modèles in-silico de RRG, puis sur nos données in-vitro. Les RRG inférés affichent une structure de réseau originale au regard de la littérature, avec un rôle central du stimulus et une topologie très distribuée et limitée. Les résultats montrent que WASABI surmonte certaines limitations des approches existantes et sera certainement utile pour aider les biologistes dans l’analyse et l’intégration de leurs données. / Inference of gene regulatory networks from gene expression data has been a long-standing and notoriously difficult task in systems biology. Recently, single-cell transcriptomic data have been massively used for gene regulatory network inference, with both successes and limitations.In the present work we propose an iterative algorithm called WASABI, dedicated to inferring a causal dynamical network from timestamped single-cell data, which tackles some of the limitations associated with current approaches. We first introduce the concept of waves, which posits that the information provided by an external stimulus will affect genes one-byone through a cascade, like waves spreading through a network. This concept allows us to infer the network one gene at a time, after genes have been ordered regarding their time of regulation. We then demonstrate the ability of WASABI to correctly infer small networks, which have been simulated in-silico using a mechanistic model consisting of coupled piecewise-deterministic Markov processes for the proper description of gene expression at the single-cell level. We finally apply WASABI on in-vitro generated data on an avian model of erythroid differentiation. The structure of the resulting gene regulatory network sheds a fascinating new light on the molecular mechanisms controlling this process. In particular, we find no evidence for hub genes and a much more distributed network structure than expected. Interestingly, we find that a majority of genes are under the direct control of the differentiation-inducing stimulus. Together, these results demonstrate WASABI versatility and ability to tackle some general gene regulatory networks inference issues. It is our hope that WASABI will prove useful in helping biologists to fully exploit the power of time-stamped single-cell data.
24

Canalização: fenótipos robustos como consequência de características da rede de regulação gênica / Canalization: phenotype robustness as consequence of characteristics of the gene regulatory network

Vitor Hugo Louzada Patricio 20 April 2011 (has links)
Em sistemas biológicos, o estudo da estabilidade das redes de regulação gênica é visto como uma contribuição importante que a Matemática pode proporcionar a pesquisas sobre câncer e outras doenças genéticas. Neste trabalho, utilizamos o conceito de ``canalização\'\' como sinônimo de estabilidade em uma rede biológica. Como as características de uma rede de regulação canalizada ainda são superficialmente compreendidas, estudamos esse conceito sob o ponto de vista computacional: propomos um modelo matemático simplificado para descrever o fenômeno e realizamos algumas análises sobre o mesmo. Mais especificamente, a estabilidade da maior bacia de atração das redes Booleanas - um clássico paradigma para a modelagem de redes de regulação - é analisada. Os resultados indicam que a estabilidade da maior bacia de atração está relacionada com dados biológicos sobre o crescimento de colônias de leveduras e que considerações sobre a interação entre as funções Booleanas e a topologia da rede devem ser realizadas conjuntamente na análise de redes estáveis. / In biological systems, the study of gene regulatory networks stability is seen as an important contribution that Mathematics can make to cancer research and that of other genetic diseases. In this work, we consider the concept of ``canalization\'\' as a consequence of stability in gene regulatory networks. The characteristics of canalized regulatory networks are superficially understood. Hence, we study the canalization concept under a computational framework: a simplified model is proposed to describe the phenomenon using Boolean Networks - a classical paradigm to modeling regulatory networks. Specifically, the stability of the largest basin of attraction in gene regulatory networks is analyzed. Our results indicate that the stability of the largest basin of attraction is related to biological data on growth of yeast colonies, and that thoughts about the interaction between Boolean functions and network topologies must be given in the analysis of stable networks.
25

Systèmes stochastiques en interaction en biophysique : immunologie et développement / Stochatic interacting systems in biophysics : immunology and development

Desponds, Jonathan 22 September 2016 (has links)
Nous présentons deux problèmes de biologie faisant appel à un traitement de données et des modèles issus de la physique statistique : la dynamique des populations en immunologie et la régulation génétique dans le développement embryonnaire. En immunologie, nous étudions le problème de la sélection somatique dans le système immunitaire adaptatif: la sélection cellulaire et la compétition qui s’y opèrent, constituant un système quasi Darwinien au sein de l’organisme. Dans un premier temps, nous considérons différentes hypothèses surla dynamique sélective : signaux déclenchant la division ou la mort cellulaire par liaison antigénique ou par cytokines, paramètres dynamiques de division, mort et fluctuations environnementales. Nous explorons leur influence sur la taille des clones dont la distribution à queue lourde a été observée à travers les espèces et les types de cellules. Deux familles de modèles émergent : un premier dans lequel le bruit est cohérent à l’échelle du clone et un second dans lequel le bruit varie de cellule à cellule. Nous montrons dans quelle mesure la distribution de taille de clones permet de déterminer le meilleur modèle et relions la forme de la distribution ainsi que l’exposant apparent de la loi de puissance aux paramètres biologiques. Dans un second temps, nous explorons les caractéristiques du réseau complexe et aléatoire formé par les clones et les antigènes : dimension, adjacence, dynamique. Nous nous intéressons à l’effet de la sélection dans le temps et à la vitesse d’évolution des clones.La deuxième partie de cette thèse est consacrée au développement embryonnaire. Dans l’embryon, il est essentiel pour le noyau de déterminer sa position avec une grande précision pour orienter la différentiation et construire un organisme structuré viable. Cette information positionnelle est acquise, transmise et conservée par la diffusion de protéines et l’activa- tion de circuits génétiques.Plus précisément, la formation de l’axe antéropostérieur chez la Drosophile est déterminée entre autres par l’activation du gène hunchback par la protéine Bicoid. Nous analysons des données issues d’expériences d’imagerie fluorescente dynamique dans les premiers cycles cellulaires de l’embryon. Nous construisons un modèle spécifique permettant d’analyser la fonction d’autocorrélation des traces temporelles de fluorescence qui prend en compte toutes les difficultés biologiques et expérimentales (bruit, calibration traces courtes, structure du gène artificiel) pour extraire les paramètre dynamiques d’activation de hunchback. Nous examinons différentes dynamiques potentielles (poisonnienne, markovienne ou non markovienne) et leur implication pour l’information dont la cellule dispose sur sa position ainsi que la précision de la lecture du gradient de Bicoid. / This work presents two problems of biology requiring data analysis and models from statistical mechanics: population dynamics in immunology and gene regulation in embryo development. In immunology I study the problem of somatic evolution in the adaptive immune system: selection of and competition among cells that form a close-to-Darwinian system within one individual. First, I consider different potential hypotheses for selective dynamics: division and death signals through antigen binding or cytokines, dynamical parameters for division, death and fluctuations of the environment. I explore their impact on clone sizes. Experimentally, these clone sizes show heavy tail distributions for different species and differentpools of cells. Two families of models emerge: models where noise is consistent at the level of the clone and models where it varies from cell to cell. I show how clone size distributions help discriminate between these models and relate the shape of the distribution and the exponent of the power law to biological parameters. Second, I explore the specifics of the complex stochastic network of clones and antigens: its dimensionality, connectivity and dynamics. I study the effect of selection at different time scales and the speed of evolution of the clones. The second part of this dissertation concerns embryo development. In the fly embryo, it is crucial that nuclei can evaluate their position within the organism accurately to determine cell fate and build a healthy organism. This positional information is obtained, transferred, and maintained through diffusion of proteins and activation of genetic networks. More specifically, the patterning of the antero-posterior axis in drosophila requires the hunchback gene, activated by the Bicoid protein. I analyze data from fluorescent live imaging in the early cell cycles of the embryo. I build a tailor-made model to analyze autocorrelation functions of fluorescence time traces overcoming all biological and experimental challenges (noise, calibration, short traces, transgene construct) to extract the parameters of hunchback activation. I examine several potential types of dynamics for gene switiching (Poisson, Markovian or non-Markovian) and predict their impact on positional information and the accuracy of bicoid gradient readout.
26

Derivation and Use of Gene Network Models to Make Quantitative Predictions of Genetic Interaction Data

Phenix, Hilary January 2017 (has links)
This thesis investigates how pairwise combinatorial gene and stimulus perturbation experiments are conducted and interpreted. In particular, I investigate gene perturbation in the form of knockout, which can be achieved in a pairwise manner by SGA or CRISPR/Cas9 methods. In the present literature, I distinguish two approaches to interpretation: the calculation of stimulus and gene interactions, and the identification of equality among phenotypes measured for distinct perturbation conditions. I describe how each approach has been applied to derive hypotheses about gene regulatory networks. I identify conflicts and uncertainties in the assumptions allowing these derivations, and explore theoretically and experimentally approaches to improve the interpretation of genetic interaction data. I apply the approaches to a well-studied gene regulatory branch of the DNA damage checkpoint (DDC) pathway of Saccharomyces cerevisiae, and confirm the known order of genes within this pathway. I also describe observations that seem inconsistent with this pathway structure. I explore this inconsistency experimentally and discover that high concentrations of the DNA alkylating drug methyl methanesulfonate cause a cell division arrest program distinct from a G1 or G2/M checkpoint or from DNA damage adaptation, that resembles an endocycle.
27

Genová regulace v Clostridium beijerinckii NRRL B-598 / Gene regulation in Clostridium beijerinckii NRRL B-598

Schwarzerová, Jana January 2020 (has links)
Diplomová práce se zabývá studiem genové regulace v Clostridium beijerinckii NRRL B-598, pro následné odvození genové regulační sítě bakterie C. beijerinckii NRRL B-598. V teoretické části této práce je uvedena obecná nomenklatura problematiky genové regulace se zaměřením na nomenklaturu genových regulačních sítí. Následně jsou zde popsané laboratorní metody, sloužící pro získání vhodných dat popisující expresi genů. Tato data jsou základem pro studium genové regulace a návrhy genových regulačních sítí. Práce se zaměřuje především na technologii RNA-Seq a stručný popis laboratorních dat získaných ze zmíněné bakterie C. beijerinckii NRRL B-598. V praktické části se práce zabývá předzpracováním těchto surových laboratorních dat a následným studiem genové regulace se zaměřením na odvození operonů a vytvoření prvních genových regulačních sítí pomocí různých přístupů pro C. beijerinckii NRRL B-598.
28

Modélisation de phénomènes biologiques complexes : application à l'étude de la réponse antigénique de lymphocytes B sains et tumoraux / Modeling complex biological phenomena : application to the study of the antigenic response of healthy and tumor B lymphocytes

Jung, Nicolas 03 December 2014 (has links)
La biologie des systèmes complexes est le cadre idéal pour l'interdisciplinarité. Dans cette thèse, les modèles et les théories statistiques répondent aux modèles et aux expérimentations biologiques. Nous nous sommes intéressés au cas particulier de la leucémie lymphoïde chronique à cellules B, qui est une forme de cancer des cellules du sang. Nous avons commencé par modéliser le programme génique tumoral sous-jacent à cette maladie et nous l'avons comparé au programme génique d'individus sains. Pour ce faire, nous avons introduit la notion de réseau en cascade. Nous avons ensuite démontré notre capacité à contrôler ce système complexe, en prédisant mathématiquement les effets d'une expérience d'intervention consistant à inhiber l'expression d'un gène. Cette thèse s'achève sur la perspective d'une modulation orientée, c'est-à-dire le choix d'expériences d'intervention permettant de « reprogrammer » le programme génique tumoral vers un état normal. / System biology is a well-suited context for interdisciplinary. In this thesis, statistical models and theories closely meet biological models and experiments. We focused on a specific complex system model: the chronic B-cell chronic lymphocytic leukemia disease which is a cancer of the blood cells. We started by modeling the genetic program which underlies this disease and we compared it to the healthy one. This conduced us to introduce the concept of cascade networks. We then showed our ability to control this complex system by predicting with our mathematical model the effects of a gene inhibition experiment. This thesis ends with the perspective of oriented modulation, i.e. targeted interventional experiments on genes allowing to “reprogram” the cancerous genetic program toward a healthy normal state.
29

Parameter optimization of linear ordinary differential equations with application in gene regulatory network inference problems / Parameteroptimering av linjära ordinära differentialekvationer med tillämpningar inom inferensproblem i regulatoriska gennätverk

Deng, Yue January 2014 (has links)
In this thesis we analyze parameter optimization problems governed by linear ordinary differential equations (ODEs) and develop computationally efficient numerical methods for their solution. In addition, a series of noise-robust finite difference formulas are given for the estimation of the derivatives in the ODEs. The suggested methods have been employed to identify Gene Regulatory Networks (GRNs). GRNs are responsible for the expression of thousands of genes in any given developmental process. Network inference deals with deciphering the complex interplay of genes in order to characterize the cellular state directly from experimental data. Even though a plethora of methods using diverse conceptual ideas has been developed, a reliable network reconstruction remains challenging. This is due to several reasons, including the huge number of possible topologies, high level of noise, and the complexity of gene regulation at different levels. A promising approach is dynamic modeling using differential equations. In this thesis we present such an approach to infer quantitative dynamic models from biological data which addresses inherent weaknesses in the current state-of-the-art methods for data-driven reconstruction of GRNs. The method is computationally cheap such that the size of the network (model complexity) is no longer a main concern with respect to the computational cost but due to data limitations; the challenge is a huge number of possible topologies. Therefore we embed a filtration step into the method to reduce the number of free parameters before simulating dynamical behavior. The latter is used to produce more information about the network’s structure. We evaluate our method on simulated data, and study its performance with respect to data set size and levels of noise on a 1565-gene E.coli gene regulatory network. We show the computation time over various network sizes and estimate the order of computational complexity. Results on five networks in the benchmark collection DREAM4 Challenge are also presented. Results on five networks in the benchmark collection DREAM4 Challenge are also presented and show our method to outperform the current state of the art methods on synthetic data and allows the reconstruction of bio-physically accurate dynamic models from noisy data. / I detta examensarbete analyserar vi parameteroptimeringsproblem som är beskrivna med ordinära differentialekvationer (ODEer) och utvecklar beräkningstekniskt effektiva numeriska metoder för att beräkna lösningen. Dessutom härleder vi brusrobusta finita-differens approximationer för uppskattning av derivator i ODEn. De föreslagna metoderna har tillämpats för regulatoriska gennätverk (RGN). RGNer är ansvariga för uttrycket av tusentals gener. Nätverksinferens handlar om att identifiera den komplicerad interaktionen mellan gener för att kunna karaktärisera cellernas tillstånd direkt från experimentella data. Tillförlitlig nätverksrekonstruktion är ett utmanande problem, trots att många metoder som använder många olika typer av konceptuella idéer har utvecklats. Detta beror på flera olika saker, inklusive att det finns ett enormt antal topologier, mycket brus, och komplexiteten av genregulering på olika nivåer. Ett lovande angreppssätt är dynamisk modellering från biologiska data som angriper en underliggande svaghet i den för tillfället ledande metoden för data-driven rekonstruktion. Metoden är beräkningstekniskt billig så att storleken på nätverket inte längre är huvudproblemet för beräkningen men ligger fortfarande i databegränsningar. Utmaningen är ett enormt antal av topologier. Därför bygger vi in ett filtreringssteg i metoder för att reducera antalet fria parameterar och simulerar sedan det dynamiska beteendet. Anledningen är att producera mer information om nätverkets struktur. Vi utvärderar metoden på simulerat data, och studierar dess prestanda med avseende på datastorlek och brusnivå genom att tillämpa den på ett regulartoriskt gennätverk med 1565-gen E.coli. Vi illustrerar beräkningstiden över olika nätverksstorlekar och uppskattar beräkningskomplexiteten. Resultat på fem nätverk från DREAM4 är också presenterade och visar att vår metod har bättre prestanda än nuvarande metoder när de tillämpas på syntetiska data och tillåter rekonstruktion av bio-fysikaliskt noggranna dynamiska modeller från data med brus.
30

Algorithmic Information Theory Applications in Bright Field Microscopy and Epithelial Pattern Formation

Mohamadlou, Hamid 01 May 2015 (has links)
Algorithmic Information Theory (AIT), also known as Kolmogorov complexity, is a quantitative approach to defining information. AIT is mainly used to measure the amount of information present in the observations of a given phenomenon. In this dissertation we explore the applications of AIT in two case studies. The first examines bright field cell image segmentation and the second examines the information complexity of multicellular patterns. In the first study we demonstrate that our proposed AIT-based algorithm provides an accurate and robust bright field cell segmentation. Cell segmentation is the process of detecting cells in microscopy images, which is usually a challenging task for bright field microscopy due to the low contrast of the images. In the second study, which is the primary contribution of this dissertation, we employ an AIT-based algorithm to quantify the complexity of information content that arises during the development of multicellular organisms. We simulate multicellular organism development by coupling the Gene Regulatory Networks (GRN) within an epithelial field. Our results show that the configuration of GRNs influences the information complexity in the resultant multicellular patterns.

Page generated in 0.0768 seconds