• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 7
  • 4
  • 4
  • 3
  • 1
  • Tagged with
  • 62
  • 62
  • 62
  • 18
  • 12
  • 11
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Inference of Gene Regulatory Networks with integration of prior knowledge

Maresi, Emiliano 17 June 2024 (has links)
Gene regulatory networks (GRNs) are crucial for understanding complex biological processes and disease mechanisms, particularly in cancer. However, GRN inference remains challenging due to the intricate nature of gene interactions and limitations of existing methods. Traditionally, prior knowledge in GRN inference simplifies the problem by reducing the search space, but its full potential is unrealized. This research aims to develop a method that uses prior knowledge to guide the GRN inference process, enhancing accuracy and biological plausibility of the resulting networks. We extended the Fused Sparse Structural Equation Models (FSSEM) framework to create the Fused Lasso Adaptive Prior (FLAP) method. FSSEM incorporates gene expression data and genetic variants in the form of expression quantitative trait loci (eQTLs) perturbations. FLAP enhances FSSEM by integrating prior knowledge of gene-gene interactions into the initial network estimate, guiding the selection of relevant gene interactions in the final inferred network. We evaluated FLAP using synthetic data to assess the impact of incorrect prior knowledge and real lung cancer data, using prior knowledge from various gene network databases (GIANT, TissueNexus, STRING, ENCODE, hTFtarget). Our findings demonstrate that integrating prior knowledge improves the accuracy of inferred networks, with FLAP showing tolerance for incorrect prior knowledge. Using real lung cancer data, functional enrichment analysis and literature validation confirmed the biological plausibility of the networks inferred by FLAP. Different sources of prior knowledge impacted the results, with GIANT providing the most biologically relevant networks, while other sources showed less consistent performance. FLAP improves GRN inference by effectively integrating prior knowledge, demonstrating robustness against incorrect prior knowledge. The method’s application to lung cancer data indicates that high-quality prior knowledge sources enhance the biological relevance of inferred networks. Future research should focus on improving the quality and integration of prior knowledge, possibly by developing consensus methods that combine multiple sources. This approach has potential applications in cancer research and drug sensitivity studies, offering a more accurate understanding of gene regulatory mechanisms and potential therapeutic targets.
52

Computational Analysis of Gene Expression Regulation from Cross Species Comparison to Single Cell Resolution

Lee, Jiyoung 31 August 2020 (has links)
Gene expression regulation is dynamic and specific to various factors such as developmental stages, environmental conditions, and stimulation of pathogens. Nowadays, a tremendous amount of transcriptome data sets are available from diverse species. This trend enables us to perform comparative transcriptome analysis that identifies conserved or diverged gene expression responses across species using transcriptome data. The goal of this dissertation is to develop and apply approaches of comparative transcriptomics to transfer knowledge from model species to non-model species with the hope that such an approach can contribute to the improvement of crop yield and human health. First, we presented a comprehensive method to identify cross-species modules between two plant species. We adapted the unsupervised network-based module finding method to identify conserved patterns of co-expression and functional conservation between Arabidopsis, a model species, and soybean, a crop species. Second, we compared drought-responsive genes across Arabidopsis, soybean, rice, corn, and Populus in order to explore the genomic characteristics that are conserved under drought stress across species. We identified hundreds of common gene families and conserved regulatory motifs between monocots and dicots. We also presented a BLS-based clustering method which takes into account evolutionary relationships among species to identify conserved co-expression genes. Last, we analyzed single-cell RNA-seq data from monocytes to attempt to understand regulatory mechanism of innate immune system under low-grade inflammation. We identified novel subpopulations of cells treated with lipopolysaccharide (LPS), that show distinct expression patterns from pro-inflammatory genes. The data revealed that a promising therapeutic reagent, sodium 4-phenylbutyrate, masked the effect of LPS. We inferred the existence of specific cellular transitions under different treatments and prioritized important motifs that modulate the transitions using feature selection by a random forest method. There has been a transition in genomics research from bulk RNA-seq to single-cell RNA-seq, and scRNA-seq has become a widely used approach for transcriptome analysis. With the experience we gained by analyzing scRNA-seq data, we plan to conduct comparative single-cell transcriptome analysis across multiple species. / Doctor of Philosophy / All cells in an organism have the same set of genes, but there are different cell types, tissues, organs with different functions as the organism ages or under different conditions. Gene expression regulation is one mechanism that modulates complex, dynamic, and specific changes in tissues or cell types for any living organisms. Understanding gene regulation is of fundamental importance in biology. With the rapid advancement of sequencing technologies, there is a tremendous amount of gene expression data (transcriptome) from individual species in public repositories. However, major studies have been reported from several model species and research on non-model species have relied on comparison results with a few model species. Comparative transcriptome analysis across species will help us to transform knowledge from model species to non-model species and such knowledge transfer can contribute to the improvement of crop yields and human health. The focus of my dissertation is to develop and apply approaches for comparative transcriptome analysis that can help us better understand what makes each species unique or special, and what kinds of common functions across species have been passed down from ancestors (evolutionarily conserved functions). Three research chapters are presented in this dissertation. First, we developed a method to identify groups of genes that are commonly co-expressed in two species. We chose seed development data from soybean with the hope to contribute to crop improvement. Second, we compared gene expression data across five plant species including soybean, rice, and corn to provide new perspectives about crop plants. We chose drought stress to identify conserved functions and regulatory factors across species since drought stress is one of the major stresses that negatively impact agricultural production. We also proposed a method that groups genes with evolutionary relationships from an unlimited number of species. Third, we analyzed single-cell RNA-seq data from mouse monocytes to understand the regulatory mechanism of the innate immune system under low-grade inflammation. We observed how innate immune cells respond to inflammation that could cause no symptoms but persist for a long period of time. Also, we reported an effect of a promising therapeutic reagent (sodium 4-phenylbutyrate) on chronic inflammatory diseases. The third project will be extended to comparative single-cell transcriptome analysis with multiple species.
53

Une nouvelle approche computationnelle pour la découverte des sites de fixation de facteurs de transcription à l’ADN, adaptée aux données de ChIP-chip et de ChIP-séquençage

Aid, Malika 09 1900 (has links)
Les facteurs de transcription sont des protéines spécialisées qui jouent un rôle important dans différents processus biologiques tel que la différenciation, le cycle cellulaire et la tumorigenèse. Ils régulent la transcription des gènes en se fixant sur des séquences d’ADN spécifiques (éléments cis-régulateurs). L’identification de ces éléments est une étape cruciale dans la compréhension des réseaux de régulation des gènes. Avec l’avènement des technologies de séquençage à haut débit, l’identification de tout les éléments fonctionnels dans les génomes, incluant gènes et éléments cis-régulateurs a connu une avancée considérable. Alors qu’on est arrivé à estimer le nombre de gènes chez différentes espèces, l’information sur les éléments qui contrôlent et orchestrent la régulation de ces gènes est encore mal définie. Grace aux techniques de ChIP-chip et de ChIP-séquençage il est possible d’identifier toutes les régions du génome qui sont liées par un facteur de transcription d’intérêt. Plusieurs approches computationnelles ont été développées pour prédire les sites fixés par les facteurs de transcription. Ces approches sont classées en deux catégories principales: les algorithmes énumératifs et probabilistes. Toutefois, plusieurs études ont montré que ces approches génèrent des taux élevés de faux négatifs et de faux positifs ce qui rend difficile l’interprétation des résultats et par conséquent leur validation expérimentale. Dans cette thèse, nous avons ciblé deux objectifs. Le premier objectif a été de développer une nouvelle approche pour la découverte des sites de fixation des facteurs de transcription à l’ADN (SAMD-ChIP) adaptée aux données de ChIP-chip et de ChIP-séquençage. Notre approche implémente un algorithme hybride qui combine les deux stratégies énumérative et probabiliste, afin d’exploiter les performances de chacune d’entre elles. Notre approche a montré ses performances, comparée aux outils de découvertes de motifs existants sur des jeux de données simulées et des jeux de données de ChIP-chip et de ChIP-séquençage. SAMD-ChIP présente aussi l’avantage d’exploiter les propriétés de distributions des sites liés par les facteurs de transcription autour du centre des régions liées afin de limiter la prédiction aux motifs qui sont enrichis dans une fenêtre de longueur fixe autour du centre de ces régions. Les facteurs de transcription agissent rarement seuls. Ils forment souvent des complexes pour interagir avec l’ADN pour réguler leurs gènes cibles. Ces interactions impliquent des facteurs de transcription dont les sites de fixation à l’ADN sont localisés proches les uns des autres ou bien médier par des boucles de chromatine. Notre deuxième objectif a été d’exploiter la proximité spatiale des sites liés par les facteurs de transcription dans les régions de ChIP-chip et de ChIP-séquençage pour développer une approche pour la prédiction des motifs composites (motifs composés par deux sites et séparés par un espacement de taille fixe). Nous avons testé ce module pour prédire la co-localisation entre les deux demi-sites ERE qui forment le site ERE, lié par le récepteur des œstrogènes ERα. Ce module a été incorporé à notre outil de découverte de motifs SAMD-ChIP. / Transcription factors (TF) play important roles in various biological processes such as differentiation, cell cycle progression and tumorigenesis. They regulate gene expression by binding to specific DNA sequences (TFBS). Identifying these cis-regulatory elements is a crucial step to understand gene regulatory networks. Technological developments have enhanced DNA sequencing at genomic scale. On the basis of the resulting sequences, computational biologists now attempt to localize the most important functional regions, starting with genes, but also importantly the whole genome characterization of transcription factor binding sites and allow the development of several computational DNA motif discovery tools. Although these various tools are widely used and have been successful at discovering novel motifs, they are not adapted to ChIP-chip and ChIP-sequencing data. The main drawback of these approaches is that most of the predicted motifs represent artifacts due to an inefficient assessment of their enrichment. This thesis is about transcription factor proteins and statistical analysis of their binding sites in ChIP-chip and ChIP-sequencing data. The first objective was to develop a new do novo DNA motif discovery tool adapted to ChIP-chip and ChIP-sequencing data. SAMD-ChIP combines enumerative and stochastic strategies to predict enriched motifs in the vicinity of the ChIP peak summits. Our approach is an automated pipeline that includes motif discovery, motif clustering, motif optimization and finally motif identification using transcription factor (TF) databases. SAMD-ChIP outperforms state-of-the-art motif discovery tools in term of the number of predicted motifs and the prediction of rare and degenerate motifs. In particular, SAMD-ChIP efficiently identifies gapped motifs such as inverted or direct repeats bound by nuclear receptors and composite motifs resulting from the association of different single TF binding sites. The underlying assumption of the second objective is that in regulatory regions, binding sites of interacting transcription factors co-occur more often than expected by chance in the vicinity of the ChIP-peak summits. We proposed an approach to predict transcription factor binding sites co-localization based on the prediction of single motifs by do novo motif discovery tools or by using TFBS models from TF data bases.
54

Comparative analysis of histologically classified oligodendrogliomas reveals characteristic molecular differences between subgroups

Lauber, Chris, Klink, Barbara, Seifert, Michael 12 June 2018 (has links) (PDF)
Background Molecular data of histologically classified oligodendrogliomas are available offering the possibility to stratify these human brain tumors into clinically relevant molecular subtypes. Methods Gene copy number, mutation, and expression data of 193 histologically classified oligodendrogliomas from The Cancer Genome Atlas (TCGA) were analyzed by well-established computational approaches (unsupervised clustering, statistical testing, network inference). Results We applied hierarchical clustering to tumor gene copy number profiles and revealed three molecular subgroups within histologically classified oligodendrogliomas. We further screened these subgroups for molecular glioma markers (1p/19q co-deletion, IDH mutation, gain of chromosome 7 and loss of chromosome 10) and found that our subgroups largely resemble known molecular glioma subtypes. We excluded glioblastoma-like tumors (7a10d subgroup) and derived a gene expression signature distinguishing histologically classified oligodendrogliomas with concurrent 1p/19q co-deletion and IDH mutation (1p/19q subgroup) from those with predominant IDH mutation alone (IDHme subgroup). Interestingly, many signature genes were part of signaling pathways involved in the regulation of cell proliferation, differentiation, migration, and cell-cell contacts. We further learned a gene regulatory network associated with the gene expression signature revealing novel putative major regulators with functions in cytoskeleton remodeling (e.g. APBB1IP, VAV1, ARPC1B), apoptosis (CCNL2, CREB3L1), and neural development (e.g. MYTIL, SCRT1, MEF2C) potentially contributing to the manifestation of differences between both subgroups. Moreover, we revealed characteristic expression differences of several HOX and SOX transcription factors suggesting the activity of different glioma stemness programs in both subgroups. Conclusions We show that gene copy number profiles alone are sufficient to derive molecular subgroups of histologically classified oligodendrogliomas that are well-embedded into general glioma classification schemes. Moreover, our revealed novel putative major regulators and characteristic stemness signatures indicate that different developmental programs might be active in these subgroups, providing a basis for future studies.
55

Etude de la dynamique des mécanismes de la répression catabolique : des modèles mathématiques aux données expérimentales / Study of the dynamics of catabolite repression : from mathematical models to experimental data

Zulkower, Valentin 03 March 2015 (has links)
La répression catabolique désigne un mode de régulation très répandu chez les bactéries, par lequel les enzymes nécessaires à l'import et la digestion de certaines sources carbonées sont réprimées en présence d'une source carbonée avantageuse, par exemple le glucose dans le cas de la bactérie E. coli. Nous proposons une approche mathématique et expérimentale pour séparer et évaluer l'importance des différents mécanismes de la répression catabolique. En particulier, nous montrons que l'AMP cyclique et l'état physiologique de la cellule jouent tous deux un rôle important dans la régulation de gènes sujets à la ré- pression catabolique. Nous présentons également des travaux méthodologiques réalisés dans le cadre de cette étude et contribuant à l'étude des réseaux de régulation génique en général. En particulier, nous étudions l'applicabilité de l'approximation quasi-stationnaire utilisée pour la réduction de modèles, et présentons des méthodes pour l'estimation robuste de taux de croissance, activité de promoteur, et concentration de protéines à partir de données bruitées provenant d'expériences avec gènes rapporteur. / Carbon Catabolite Repression (CCR) is a wide-spread mode of regulation in bacteria by which the enzymes necessary for the uptake and utilization of some carbon sources are repressed in presence of a preferred carbon source, e.g., glucose in the case of Escherichia coli . We propose a joint mathematical and experimental approach to separate and evaluate the importance of the different components of CCR. In particular, we show that both cyclic AMP and the global physiology of the cell play a major role in the regulation of the cAMP-dependent genes affected by CCR. We also present methodological improvements for the study of gene regulatory networks in general. In partic- ular, we examine the applicability of the Quasi-Steady-State-Approximation to reduce mathematical gene expression models, and provide robust meth- ods for the robust estimation of growth rate, promoter activity, and protein concentration from noisy kinetic reporter experiments.
56

Comparative analysis of histologically classified oligodendrogliomas reveals characteristic molecular differences between subgroups

Lauber, Chris, Klink, Barbara, Seifert, Michael 12 June 2018 (has links)
Background Molecular data of histologically classified oligodendrogliomas are available offering the possibility to stratify these human brain tumors into clinically relevant molecular subtypes. Methods Gene copy number, mutation, and expression data of 193 histologically classified oligodendrogliomas from The Cancer Genome Atlas (TCGA) were analyzed by well-established computational approaches (unsupervised clustering, statistical testing, network inference). Results We applied hierarchical clustering to tumor gene copy number profiles and revealed three molecular subgroups within histologically classified oligodendrogliomas. We further screened these subgroups for molecular glioma markers (1p/19q co-deletion, IDH mutation, gain of chromosome 7 and loss of chromosome 10) and found that our subgroups largely resemble known molecular glioma subtypes. We excluded glioblastoma-like tumors (7a10d subgroup) and derived a gene expression signature distinguishing histologically classified oligodendrogliomas with concurrent 1p/19q co-deletion and IDH mutation (1p/19q subgroup) from those with predominant IDH mutation alone (IDHme subgroup). Interestingly, many signature genes were part of signaling pathways involved in the regulation of cell proliferation, differentiation, migration, and cell-cell contacts. We further learned a gene regulatory network associated with the gene expression signature revealing novel putative major regulators with functions in cytoskeleton remodeling (e.g. APBB1IP, VAV1, ARPC1B), apoptosis (CCNL2, CREB3L1), and neural development (e.g. MYTIL, SCRT1, MEF2C) potentially contributing to the manifestation of differences between both subgroups. Moreover, we revealed characteristic expression differences of several HOX and SOX transcription factors suggesting the activity of different glioma stemness programs in both subgroups. Conclusions We show that gene copy number profiles alone are sufficient to derive molecular subgroups of histologically classified oligodendrogliomas that are well-embedded into general glioma classification schemes. Moreover, our revealed novel putative major regulators and characteristic stemness signatures indicate that different developmental programs might be active in these subgroups, providing a basis for future studies.
57

Bioinformatic analyses for T helper cell subtypes discrimination and gene regulatory network reconstruction

Kröger, Stefan 02 August 2017 (has links)
Die Etablierung von Hochdurchsatz-Technologien zur Durchführung von Genexpressionsmessungen führte in den letzten 20 Jahren zu einer stetig wachsende Menge an verfügbaren Daten. Sie ermöglichen durch Kombination einzelner Experimente neue Vergleichsstudien zu kombinieren oder Experimente aus verschiedenen Studien zu großen Datensätzen zu vereinen. Dieses Vorgehen wird als Meta-Analyse bezeichnet und in dieser Arbeit verwendet, um einen großen Genexpressionsdatensatz aus öffentlich zugänglichen T-Zell Experimenten zu erstellen. T-Zellen sind Immunzellen, die eine Vielzahl von unterschiedlichen Funktionen des Immunsystems inititiieren und steuern. Sie können in verschiedene Subtypen mit unterschiedlichen Funktionen differenzieren. Der mittels Meta-Analyse erstellte Datensatz beinhaltet nur Experimente zu einem T-Zell-Subtyp, den regulatorischen T-Zellen (Treg) bzw. der beiden Untergruppen, natürliche Treg (nTreg) und induzierte Treg (iTreg) Zellen. Eine bisher unbeantwortete Frage lautet, welche subtyp-spezifischen gen-regulatorische Mechanismen die T-Zell Differenzierung steuern. Dazu werden in dieser Arbeit zwei spezifische Herausforderungen der Treg Forschung behandelt: (i) die Identifikation von Zelloberflächenmarkern zur Unterscheidung und Charakterisierung der Subtypen, sowie (ii) die Rekonstruktion von Treg-Zell-spezifischen gen-regulatorischen Netzwerken (GRN), die die Differenzierungsmechanismen beschreiben. Die implementierte Meta-Analyse kombiniert mehr als 150 Microarray-Experimente aus über 30 Studien in einem Datensatz. Dieser wird benutzt, um mittels Machine Learning Zell-spezifische Oberflächenmarker an Hand ihres Expressionsprofils zu identifizieren. Mit der in dieser Arbeit entwickelten Methode wurden 41 Genen extrahiert, von denen sechs Oberflächenmarker sind. Zusätzliche Validierungsexperimente zeigten, dass diese sechs Gene die Experimenten beider T-Zell Subtypen sicher unterscheiden können. Zur Rekonstruktion von GRNs vergleichen wir unter Verwendung des erstellten Datensatzes 11 verschiedene Algorithmen und evaluieren die Ergebnisse mit Informationen aus Interaktionsdatenbanken. Die Evaluierung zeigt, dass die derzeit verfügbaren Methoden nicht in der Lage sind den Wissensstand Treg-spezifischer, regulatorsicher Mechanismen zu erweitern. Abschließend präsentieren wir eine Datenintegrationstrategie zur Rekonstruktion von GRN am Beispiel von Th2 Zellen. Aus Hochdurchsatzexperimenten wird ein Th2-spezifisches GRN bestehend aus 100 Genen rekonstruiert. Während 89 dieser Gene im Kontext der Th2-Zelldifferenzierung bekannt sind, wurden 11 neue Kandidatengene ohne bisherige Assoziation zur Th2-Differenzierung ermittelt. Die Ergebnisse zeigen, dass Datenintegration prinzipiell die GRN Rekonstruktion ermöglicht. Mit der Verfügbarkeit von mehr Daten mit besserer Qualität ist zu erwarten, dass Methoden zur Rekonstruktion maßgeblich zum besseren Verstehen der zellulären Differenzierung im Immunsystem und darüber hinaus beitragen können und so letztlich die Ursachenforschung von Dysfunktionen und Krankheiten des Immunsystems ermöglichen werden. / Within the last two decades high-throughput gene expression screening technologies have led to a rapid accumulation of experimental data. The amounts of information available have enabled researchers to contrast and combine multiple experiments by synthesis, one of such approaches is called meta-analysis. In this thesis, we build a large gene expression data set based on publicly available studies for further research on T cell subtype discrimination and the reconstruction of T cell specific gene regulatory events. T cells are immune cells which have the ability to differentiate into subtypes with distinct functions, initiating and contributing to a variety of immune processes. To date, an unsolved problem in understanding the immune system is how T cells obtain a specific subtype differentiation program, which relates to subtype-specific gene regulatory mechanisms. We present an assembled expression data set which describes a specific T cell subset, regulatory T (Treg) cells, which can be further categorized into natural Treg (nTreg) and induced Treg (iTreg) cells. In our analysis we have addressed specific challenges in regulatory T cell research: (i) discriminating between different Treg cell subtypes for characterization and functional analysis, and (ii) reconstructing T cell subtype specific gene regulatory mechanisms which determine the differences in subtype-specific roles for the immune system. Our meta-analysis strategy combines more than one hundred microarray experiments. This data set is applied to a machine learning based strategy of extracting surface protein markers to enable Treg cell subtype discrimination. We identified a set of 41 genes which distinguish between nTregs and iTregs based on gene expression profile only. Evaluation of six of these genes confirmed their discriminative power which indicates that our approach is suitable to extract candidates for robust discrimination between experiment classes. Next, we identify gene regulatory interactions using existing reconstruction algorithms aiming to extend the number of known gene-gene interactions for Treg cells. We applied eleven GRN reconstruction tools based on expression data only and compared their performance. Taken together, our results suggest that the available methods are not yet sufficient to extend the current knowledge by inferring so far unreported Treg specific interactions. Finally, we present an approach of integrating multiple data sets based on different high-throughput technologies to reconstruct a subtype-specific GRN. We constructed a Th2 cell specific gene regulatory network of 100 genes. While 89 of these are known to be related to Th2 cell differentiation, we were able to attribute 11 new candidate genes with a function in Th2 cell differentiation. We show that our approach to data integration does, in principle, allow for the reconstruction of a complex network. Future availability of more and more consistent data may enable the use of the concept of GRN reconstruction to improve understanding causes and mechanisms of cellular differentiation in the immune system and beyond and, ultimately, their dysfunctions and diseases.
58

Functional and evolutionary characterization of flowering-related long non-coding RNAs

Chen, Li 17 May 2021 (has links)
Genomweite Bemühungen haben eine große Anzahl langer nichtkodierender RNAs (lncRNAs) identifiziert, obwohl ihre möglichen Funktionen weitgehend rätselhaft bleiben. Hier verwendeten wir ein System zur synchronisierten Blüteninduktion in Arabidopsis, um 4106 blütenbezogene lange intergene RNAs (lincRNAs) zu identifizieren. Blütenbezogene lincRNAs sind typischerweise mit funktionellen Enhancern assoziiert, die bidirektional transkribiert werden und mit verschiedenen funktionellen Genmodulen assoziiert sind, die mit der Entwicklung von Blütenorganen zusammenhängen, die durch Koexpressionsnetzwerkanalyse aufgedeckt wurden. Die Master-regulatorischen Transkriptionsfaktoren (TFs) APETALA1 (AP1) und SEPALLATA3 (SEP3) binden an lincRNA-assoziierte Enhancer. Die Bindung dieser TFs korreliert mit der Zunahme der lincRNA-Transkription und fördert möglicherweise die Zugänglichkeit von Chromatin an Enhancern, gefolgt von der Aktivierung einer Untergruppe von Zielgenen. Darüber hinaus ist die Evolutionsdynamik von lincRNAs in Pflanzen, einschließlich nicht blühender Pflanzen, noch nicht bekannt, und das Expressionsmuster in verschiedenen Pflanzenarten war ziemlich unbekannt. Hier identifizierten wir Tausende von lincRNAs in 26 Pflanzenarten, einschließlich nicht blühender Pflanzen. Ein direkter Vergleich von lincRNAs zeigt, dass die meisten lincRNAs speziesspezifisch sind und das Expressionsmuster von lincRNAs einen hohen Transkriptionsumsatz nahe legt. Darüber hinaus zeigen konservierte lincRNAs eine aktive Regulation durch Transkriptionsfaktoren wie AP1 und SEP3. Konservierte lincRNAs zeigen eine konservierte blütenbezogene Funktionalität sowohl in der Brassicaceae- als auch in der Grasfamilie. Die Evolutionslandschaft von lincRNAs in Pflanzen liefert wichtige Einblicke in die Erhaltung und Funktionalität von lincRNAs. / Genome-wide efforts have identified a large number of long non-coding RNAs (lncRNAs), although their potential functions remain largely enigmatic. Here, we used a system for synchronized floral induction in Arabidopsis to identify 4106 flower-related long intergenic RNAs (lincRNAs). Flower-related lincRNAs are typically associated with functional enhancers which are bi-directionally transcribed and are associated with diverse functional gene modules related to floral organ development revealed by co-expression network analysis. The master regulatory transcription factors (TFs) APETALA1 (AP1) and SEPALLATA3 (SEP3) bind to lincRNA-associated enhancers. The binding of these TFs is correlated with the increase in lincRNA transcription and potentially promotes chromatin accessibility at enhancers, followed by activation of a subset of target genes. Furthermore, the evolutionary dynamics of lincRNAs in plants including non-flowering plants still remain to be elusive and the expression pattern in different plant species was quite unknown. Here, we identified thousands of lincRNAs in 26 plant species including non-flowering plants, and allow us to infer sequence conserved and synteny based homolog lincRNAs, and explore conserved characteristics of lincRNAs during plants evolution. Direct comparison of lincRNAs reveals most lincRNAs are species-specific and the expression pattern of lincRNAs suggests their high evolutionary gain and loss. Moreover, conserved lincRNAs show active regulation by transcriptional factors such as AP1 and SEP3. Conserved lincRNAs demonstrate conserved flower related functionality in both the Brassicaceae and grass family. The evolutionary landscape of lincRNAs in plants provide important insights into the conservation and functionality of lincRNAs.
59

Pseudomonas Aeruginosa AmpR Transcriptional Regulatory Network

Balasubramanian, Deepak 08 March 2013 (has links)
In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. Previous studies showed that in addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, the transcriptional profiles generated using DNA microarrays and RNA-Seq of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion mutant, PAO∆ampR were analyzed. Transcriptome analysis demonstrates that the AmpR regulon is much more extensive than previously thought influencing the differential expression of over 500 genes. In addition to regulating resistance to β-lactam antibiotics via AmpC, AmpR also regulates non-β-lactam antibiotic resistance by modulating the MexEF-OprN efflux pump. Virulence mechanisms including biofilm formation, QS-regulated acute virulence, and diverse physiological processes such as oxidative stress response, heat-shock response and iron uptake are AmpR-regulated. Real-time PCR and phenotypic assays confirmed the transcriptome data. Further, Caenorhabditis elegans model demonstrates that a functional AmpR is required for full pathogenicity of P. aeruginosa. AmpR, a member of the core genome, also regulates genes in the regions of genome plasticity that are acquired by horizontal gene transfer. The extensive AmpR regulon included other transcriptional regulators and sigma factors, accounting for the extensive AmpR regulon. Gene expression studies demonstrate AmpR-dependent expression of the QS master regulator LasR that controls expression of many virulence factors. Using a chromosomally tagged AmpR, ChIP-Seq studies show direct AmpR binding to the lasR promoter. The data demonstrates that AmpR functions as a global regulator in P. aeruginosa and is a positive regulator of acute virulence while negatively regulating chronic infection phenotypes. In summary, my dissertation sheds light on the complex regulatory circuit in P. aeruginosa to provide a better understanding of the bacterial response to antibiotics and how the organism coordinately regulates a myriad of virulence factors.
60

Inferencing Gene Regulatory Networks for Drosophila Eye Development Using an Ensemble Machine Learning Approach

Abdul Jawad Mohammed (18437874) 29 April 2024 (has links)
<p dir="ltr">The primary purpose of this thesis is to propose and demonstrate BioGRNsemble, a modular and flexible approach for inferencing gene regulatory networks from RNA-Seq data. Integrating the GENIE3 and GRNBoost2 algorithms, this ensembles-of-ensembles method attempts to balance the outputs of both models through averaging, before providing a trimmed-down gene regulatory network consisting of transcription and target genes. Using a Drosophila Eye Dataset, we were able to successfully test this novel methodology, and our validation analysis using an online database determined over 3500 gene links correctly detected, albeit out of almost 530,000 predictions, leaving plenty of room for improvement in the future.</p>

Page generated in 0.7013 seconds