• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 526
  • 268
  • 208
  • 80
  • 50
  • 49
  • 39
  • 25
  • 17
  • 15
  • 12
  • 9
  • 9
  • 9
  • 6
  • Tagged with
  • 1504
  • 312
  • 222
  • 187
  • 177
  • 165
  • 157
  • 156
  • 154
  • 153
  • 142
  • 131
  • 108
  • 98
  • 90
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Elektrický stroj s přepínáním magnetického toku / Flux switching electric machine

Szabó, Hugo January 2021 (has links)
The goal of this thesis is to create a literature search about a rotating electrical machine with switching of magnetic flux, to explain its construction concept and its operating behavior, to create an initial concept of generator, calculate chosen construction with finite element method analysis and to compare analysis results with analytical design. To create a concept of the generator one of available designing procedures will be used.
112

Modeling Two-Phase Flow in the Downcomer of a Once-Through Steam Generator using RELAP5/MOD2

Clark, Randy Raymond 31 January 2012 (has links)
The purpose of this study is to develop an accurate model of the downcomer of the once-through steam generator (OTSG) developed by Babcock & Wilcox, using RELAP5/MOD2. While the physical model can be easily developed, several parameters are left to be adjusted to optimally model the downcomer and match data that was retrieved in a first-of-a-kind (FOAK) study conducted at Oconee Unit I in Oconee, South Carolina. Once the best-fit set of parameters has been determined, then the model must be tested for power levels exceeding that for which the steam generator was originally designed, so as to determine the power level at which a phenomenon known as flood-back becomes a concern. All known previous studies that have been conducted using RELAP5/MOD2 have shown that RELAP over-predicts interphase friction. However, all of those studies focused on heated two-phase upflow, whereas the downcomer is modeled as adiabatic two-phase downflow. In this study, it is found that the original slug drag model for RELAP5/MOD2 developed by Idaho National Engineering Laboratory (INEL) under-predicts the interphase friction between the liquid and vapor phase within the downcomer. Using a modified version of the original slug drag model created by Babcock & Wilcox (B&W), an optimum multiplier is found for each power level. An increase of 1181% in interphase friction over the INEL slug drag model, which equals an increase of 4347% for the default B&W model provides the most accurate results for all power levels studied. Emphasis is also placed on modeling the orifice plate of the OTSG downcomer which has been added to stabilize pressure fluctuations between the downcomer and tube bundle of the OTSG. While several different schemes are explored for modeling the orifice plate, a branch connection with an inlet area 14.22% of that of the downcomer is used to model the orifice plate along with the volume that transitions the two-phase downflow to horizontal flow into the tube nest of the OTSG. Power levels exceeding that for which the steam generator was designed are tested in RELAP using the slug drag multiplier to determine at which power level a liquid level would occur and would flood-back become a concern. In this study, it is determined that a liquid level would form at 135% power and that at any higher power level, flood-back would be of concern for any user of the steam generator. / Master of Science
113

Syngas From Biomass Gasification As Fuel For Generator

Shah, Ajay 02 May 2009 (has links)
The emergence of biomass based energy warrants the evaluation of syngas from biomass gasification as a fuel for personal power systems. The objectives of this study were to determine the performance and exhaust emissions of a commercial 5.5 kW generator modified for operation with 100% syngas at different syngas flows and to compare the results with those obtained for gasoline operation at same electrical power. Maximum power output for gasoline operation was 2451 W and maximum power output for syngas operation was 1392 W. Overall efficiencies of the generator were same at maximum electrical power outputs for operation with both the fuels. At four different electrical power output categories, the exhaust concentrations of carbon monoxide and oxides of nitrogen were significantly lower while the carbon dioxide emissions were significantly higher for the syngas operation. The unit cost of electricity generation was $6.38/kWh for syngas operation and $0.56/kWh for gasoline operation.
114

A Temperature and Process Insensitive CMOS Only Reference Current Generator

Bethi, Shiva Sai January 2014 (has links)
No description available.
115

Parametric 3D Blade Geometry Modeling Tool for Turbomachinery Systems

Siddappaji, Kiran 24 September 2012 (has links)
No description available.
116

A New Simulation of Multi-State Fading Channels

Mendu, Arjun 18 August 2003 (has links)
No description available.
117

Trafgen: An efficient approach to statistically accurate artificial network traffic generation

Helvey, Eric Lee January 1998 (has links)
No description available.
118

An EPROM based waveform generator for a CCD test station

Hsieh, Long-Bing January 1988 (has links)
No description available.
119

DESIGN OF A HIGH FIDELITY WAKE SIMULATOR FOR RESEARCH USING LINEAR CASCADES

Pluim, Jonathon Douglas 08 September 2009 (has links)
No description available.
120

GA/SA-based hybrid techniques for the scheduling of generator maintenance in power systems

Dahal, Keshav P., Burt, G.M., McDonald, J.R., Galloway, S.J. January 2000 (has links)
Yes / Proposes the application of a genetic algorithm (GA) and simulated annealing (SA) based hybrid approach for the scheduling of generator maintenance in power systems using an integer representation. The adapted approach uses the probabilistic acceptance criterion of simulated annealing within the genetic algorithm framework. A case study is formulated in this paper as an integer programming problem using a reliability-based objective function and typical problem constraints. The implementation and performance of the solution technique are discussed. The results in this paper demonstrate that the technique is more effective than approaches based solely on genetic algorithms or solely on simulated annealing. It therefore proves to be a valid approach for the solution of generator maintenance scheduling problems

Page generated in 0.0664 seconds