• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Entschlüsselung des Genoms von Gluconobacter oxydans 621H - einem Bakterium von industriellem Interesse / Insights into the genome of Gluconobacter oxydans: an organism of industrial importance

Prust, Christina 29 June 2004 (has links)
No description available.
2

Funktionelle Genomanalyse bakterieller Erreger, assoziiert mit der Europäischen Faulbrut von Honigbienen / Functional genome analysis of bacterial pathogens associated with European foulbrood of honey bees

Djukic, Marvin 07 October 2015 (has links)
No description available.
3

Molekulargenetische Kartierung von genetischen Determinanten bei idiopathisch generalisierten Epilepsien

Sander, Thomas 06 March 2001 (has links)
Ziel unserer molekulargenetischen Studien ist es, Gene der genetisch komplexen idiopathisch generalisierten Epilepsien (IGE) im Genom des Menschen zu lokalisieren und die verantwortlichen Genstörungen durch die Mutationsanalyse von positionell und funktionell plausiblen Kandidatengenen zu identifizieren. Unsere Kopplungsanalysen konnten einen IGE-Locus (Locus-Symbol: EJM1) in der chromosomalen Region 6p21.3 bestätigen und die Kandidatengenregion auf ein chromosomales Segment von 10 centiMorgan (cM) eingrenzen. Ein positionell und funktionell plausibles Kandidatengen ist das Gen einer Untereinheit des heterodimeren GABAB Rezeptors (Gen-Symbol: GABA-BR1). Die systematische Mutationsanalyse des GABA-BR1 Gens und eine Assoziationsstudie mit drei Sequenzpolymorphismen in den Exonen 1a1, 7 und 11 ergaben keinen Anhalt für eine Beteiligung des GABA-BR1 Gens bei der Epileptogenese der IGE. Kopplungshinweise in den chromosomalen Regionen 20q13, 8q24 und 15q14 konnten wir in unserem Familienkollektiv nicht bestätigen. Die Mutationsanalyse der Kandidatengene CHRNA4 und KCNQ2 in der Kandidatengenregion 20q13 und von zwei Kalziumkanal-Genen (CACNA1A, CACNB4) ergaben keinen Hinweis auf disponierende Sequenzvarianten bei IGE-Patienten. Unsere systematische Genomanalyse bei 130 Familien mit mehreren IGE-Angehörigen zielte auf die positionelle Eingrenzung von Genstörungen, die an der Disposition eines breiten IGE-Spektrums beteiligt sind. Bei 360 der 694 Familienangehörigen lag ein IGE-Phänotyp vor. Bei 617 Familienangehörigen wurden für die systematische Genomanalyse insgesamt 416 Mikrosatelliten-Polymorphismen mit einem durchschnittlichen Abstand von 10 cM genotypisiert. Die parameter-freien Kopplungsanalysen ergaben einen signifikanten Kopplungsbefund in der chromosomalen Region 3q26 (P = 1,7 x 10-5 bei D3S3725) sowie zwei Kopplungshinweise in den chromosomalen Regionen 2q36.1 (P = 5,4 x 10-4 bei D2S1371) und 14q23 (P = 5,6 x 10-4 bei D14S63). Positionell und funktionell plausible Kandidatengene sind die Gene des Kalium-Kanals KCNA1B und des Chlorid-Kanals CLCN2 in der Region 3q26, das Gen des Chlorid-Bikarbonat Austauschers SLC4A3 in der Region 2q36, und das Gen des Natrium-Kalzium Austauschers SLC8A3 in der Region 14q23. Der molekulargenetische Nachweis von Genmutationen für die IGE wird konkrete Einblicke in die molekularen Mechanismen der Epileptogenese eröffnen und die Voraussetzungen dafür schaffen, rational begründete Therapieansätze zu entwickeln. / The aim of our molecular genetic studies is to map genes of the genetically complex idiopathic generalized epilepsies on the human genome and to identify the causative gene variants by mutation analyses of positional and functional plausible candidate genes. Our linkage studies confirmed an IGE-locus (locus symbol: EJM1) in the chromosomal region 6p21.3 and to refine the candidate region to a chromosomal segment of 10 centiMorgan (cM). A positional and functional candidate gene is the gene encoding a subunit of the heterodimeric GABAB receptor (gene symbol: GABA-BR1). The systematic mutation screening of the GABA-BR1 gene and an association analysis with three sequence polymorphisms in exons 1a1, 7 and 11 provided no evidence that the GABA-BR1 gene confers susceptibility to the epileptogenesis of IGE. We failed to replicate previous linkage findings in the chromosomal regions 20q13, 8q24 and 15q14 in our family sample. Mutation analysis of the candidate genes CHRNA4 and KCNQ2 and two genes encoding calcium channel subunits (CACNA1A, CACNB4) did not detect common susceptibility alleles in IGE patients. Our systematic genome scan was designed to identify susceptibility loci that predispose to a broad spectrum of common IGE syndromes. Our study included 130 families with two or more siblings affected by an IGE. In total, 360 out of 694 family members were affected by an IGE-trait. 617 family members were genotyped for 416 microsatellite polymorphisms with an average distance of 10 cM. Non-parametric linkage analysis provided significant evidence for a novel IGE susceptibility locus on chromosome 3q26 (ZNPL = 4.19 at D3S3725; P = 0.000017) and suggestive evidence for two IGE loci on chromosome 14q23 (ZNPL = 3.28 at D14S63; P = 0.000566), and chromosome 2q36 (ZNPL = 2.98 at D2S1371; P = 0.000535). Positional and functional candidate genes include the potassium channel gene KCNA1B and the chloride channel gene CLCN2 in the region 3q26, the chloride-bicarbonate anion exchanger gene SLC4A3 in the region 2q36, and the sodium-calcium exchanger gene SLC8A3 in the region 14q23. The molecular genetic detection of susceptibility genes for IGE will provide clues to elucidate the complex molecular pathways of epileptogenesis, and, finally, will help to develop rational treatment strategies.
4

Genomic and transcriptomic characterization of novel iron oxidizing bacteria of the genus “Ferrovum“ / Charakterisierung von neuartigen eisenoxidierenden Bakterien der Gattung „Ferrovum” auf Genom- und Transkriptomebene

Ullrich, Sophie 30 June 2016 (has links) (PDF)
Acidophilic iron oxidizing bacteria of the betaproteobacterial genus “Ferrovum” are ubiquitously distributed in acid mine drainage (AMD) habitats worldwide. Since their isolation and maintenance in the laboratory has proved to be extremely difficult, members of this genus are not accessible to a “classical” microbiological characterization with exception of the designated type strain “Ferrovum myxofaciens” P3G. The present study reports the characterization of “Ferrovum” strains at genome and transcriptome level. “Ferrovum” sp. JA12, “Ferrovum” sp. PN-J185 and “F. myxofaciens” Z-31 represent the iron oxidizers of the mixed cultures JA12, PN-J185 and Z-31. The mixed cultures were derived from the mine water treatment plant Tzschelln close to the lignite mining site in Nochten (Lusatia, Germany). The mixed cultures also contain a heterotrophic strain of the genus Acidiphilium. The genome analysis of Acidiphilium sp. JA12-A1, the heterotrophic contamination of the mixed culture JA12, indicates an interspecies carbon and phosphate transfer between Acidiphilium and “Ferrovum” in the mixed culture, and possibly also in their natural habitat. The comparison of the inferred metabolic potentials of four “Ferrovum” strains and the analysis of their phylogenetic relationships suggest the existence of two subgroups within the genus “Ferrovum” (i.e. the operational taxonomic units OTU-1 and OUT-2) harboring characteristic metabolic profiles. OTU-1 includes the “F. myxofaciens” strains P3G and Z-31, which are predicted to be motile and diazotrophic, and to have a higher acid tolerance than OTU-2. The latter includes two closely related proposed species represented by the strains JA12 and PN-J185, which appear to lack the abilities of motility, chemotaxis and molecular nitrogen fixation. Instead, both OTU-2 strains harbor the potential to use urea as alternative nitrogen source to ammonium, and even nitrate in case of the JA12-like species. The analysis of the genome architectures of the four “Ferrovum” strains suggests that horizontal gene transfer and loss of metabolic genes, accompanied by genome reduction, have contributed to the evolution of the OTUs. A trial transcriptome study of “Ferrovum” sp. JA12 supports the ferrous iron oxidation model inferred from its genome sequence, and reveals the potential relevance of several hypothetical proteins in ferrous iron oxidation. Although the inferred models in “Ferrovum” spp. share common features with the acidophilic iron oxidizers of the Acidithiobacillia, it appears to be more similar to the neutrophilic iron oxidizers Mariprofundus ferrooxydans (“Zetaproteobacteria”) and Sideroxydans lithotrophicus (Betaproteobacteria). These findings suggest a common origin of ferrous iron oxidation in the Beta- and “Zetaproteobacteria”, while the acidophilic lifestyle of “Ferrovum” spp. may have been acquired later, allowing them to also colonize acid mine drainage habitats.
5

Genomic and transcriptomic characterization of novel iron oxidizing bacteria of the genus “Ferrovum“

Ullrich, Sophie 30 May 2016 (has links)
Acidophilic iron oxidizing bacteria of the betaproteobacterial genus “Ferrovum” are ubiquitously distributed in acid mine drainage (AMD) habitats worldwide. Since their isolation and maintenance in the laboratory has proved to be extremely difficult, members of this genus are not accessible to a “classical” microbiological characterization with exception of the designated type strain “Ferrovum myxofaciens” P3G. The present study reports the characterization of “Ferrovum” strains at genome and transcriptome level. “Ferrovum” sp. JA12, “Ferrovum” sp. PN-J185 and “F. myxofaciens” Z-31 represent the iron oxidizers of the mixed cultures JA12, PN-J185 and Z-31. The mixed cultures were derived from the mine water treatment plant Tzschelln close to the lignite mining site in Nochten (Lusatia, Germany). The mixed cultures also contain a heterotrophic strain of the genus Acidiphilium. The genome analysis of Acidiphilium sp. JA12-A1, the heterotrophic contamination of the mixed culture JA12, indicates an interspecies carbon and phosphate transfer between Acidiphilium and “Ferrovum” in the mixed culture, and possibly also in their natural habitat. The comparison of the inferred metabolic potentials of four “Ferrovum” strains and the analysis of their phylogenetic relationships suggest the existence of two subgroups within the genus “Ferrovum” (i.e. the operational taxonomic units OTU-1 and OUT-2) harboring characteristic metabolic profiles. OTU-1 includes the “F. myxofaciens” strains P3G and Z-31, which are predicted to be motile and diazotrophic, and to have a higher acid tolerance than OTU-2. The latter includes two closely related proposed species represented by the strains JA12 and PN-J185, which appear to lack the abilities of motility, chemotaxis and molecular nitrogen fixation. Instead, both OTU-2 strains harbor the potential to use urea as alternative nitrogen source to ammonium, and even nitrate in case of the JA12-like species. The analysis of the genome architectures of the four “Ferrovum” strains suggests that horizontal gene transfer and loss of metabolic genes, accompanied by genome reduction, have contributed to the evolution of the OTUs. A trial transcriptome study of “Ferrovum” sp. JA12 supports the ferrous iron oxidation model inferred from its genome sequence, and reveals the potential relevance of several hypothetical proteins in ferrous iron oxidation. Although the inferred models in “Ferrovum” spp. share common features with the acidophilic iron oxidizers of the Acidithiobacillia, it appears to be more similar to the neutrophilic iron oxidizers Mariprofundus ferrooxydans (“Zetaproteobacteria”) and Sideroxydans lithotrophicus (Betaproteobacteria). These findings suggest a common origin of ferrous iron oxidation in the Beta- and “Zetaproteobacteria”, while the acidophilic lifestyle of “Ferrovum” spp. may have been acquired later, allowing them to also colonize acid mine drainage habitats.:EIDESSTATTLICHE ERKLÄRUNG ... 2 CONTENT ... 4 SUMMARY ... 9 CHAPTER I ... 11 ORIGIN AND MICROBIOLOGY OF ACID MINE DRAINAGE ... 11 ACIDOPHILIC IRON OXIDIZING BACTERIA OF THE GENUS “FERROVUM” ... 12 APPLICATION OF OMICS-BASED APPROACHES TO CHARACTERIZE ACIDOPHILES ... 14 AIMS OF THE PRESENT WORK ... 15 CHAPTER II ... 17 ABSTRACT ... 18 INTRODUCTION ... 18 METHODS ... 19 GENOME PROJECT HISTORY ... 19 GROWTH CONDITIONS AND GENOMIC DNA PREPARATION ... 20 GENOME SEQUENCING AND ASSEMBLY ... 20 GENOME ANNOTATION ... 21 RESULTS ... 21 CLASSIFICATION AND FEATURES ... 21 GENOME PROPERTIES ... 24 INSIGHTS FROM THE GENOME SEQUENCE ... 24 COMPARATIVE GENOMICS ... 28 CONCLUSIONS ... 30 ACKNOWLEDGMENTS ... 32 AUTHOR CONTRIBUTIONS ... 32 CHAPTER III ... 33 ABSTRACT ... 34 INTRODUCTION ... 34 METHODS ... 36 ORIGIN AND CULTIVATION OF “FERROVUM” STRAIN JA12 ... 36 GENOME SEQUENCING, ASSEMBLY AND ANNOTATION ... 37 VISUALIZATION OF THE NEARLY COMPLETE GENOME ... 38 PHYLOGENETIC ANALYSIS ... 39 PREDICTION OF MOBILE GENETIC ELEMENTS ... 39 NUCLEOTIDE SEQUENCE ACCESSION NUMBER ... 39 RESULTS AND DISCUSSION ... 39 PHYLOGENETIC CLASSIFICATION OF “FERROVUM” STRAIN JA12 ... 39 GENOME PROPERTIES ... 40 NUTRIENT ASSIMILATION AND BIOMASS PRODUCTION ... 44 Carbon dioxide fixation ... 44 Central carbon metabolism ... 45 Nitrogen ... 47 Phosphate ... 49 Sulfate ... 50 ENERGY METABOLISM ... 50 Ferrous iron oxidation ... 50 Other redox reactions connected to the quinol pool ... 54 Predicted formate dehydrogenase ... 55 STRATEGIES TO ADAPT TO ACIDIC ENVIRONMENTS, HIGH METAL LOADS AND OXIDATIVE STRESS ... 55 Acidic environment ... 55 Strategies to cope with high metal and metalloid loads ... 58 Oxidative stress ... 59 HORIZONTAL GENE TRANSFER ... 60 CONCLUSIONS ... 61 ACKNOWLEDGMENTS ... 62 AUTHORS\' CONTRIBUTIONS ... 62 CHAPTER IV ... 63 ABSTRACT ... 64 INTRODUCTION ... 64 METHODS ... 66 ORIGIN AND CULTIVATION OF “FERROVUM” STRAINS PN-J185 AND Z-31 ... 66 GENOME SEQUENCING, ASSEMBLY AND ANNOTATION ... 66 PREDICTION OF MOBILE GENETIC ELEMENTS ... 67 COMPARATIVE GENOMICS ... 68 Phylogenomic analysis ... 68 Assignment of protein-coding genes to the COG classification ... 68 Identification of orthologous proteins ... 68 Comparison and analysis of genome architectures ... 69 RESULTS ... 69 GENERAL GENOME FEATURES AND PHYLOGENETIC RELATIONSHIP OF THE FOUR “FERROVUM” STRAINS ... 69 COMPARISON OF INFERRED METABOLIC TRAITS ... 71 Identification of core genes and flexible genes ... 71 Comparison of the central metabolism ... 74 Central carbon metabolism ... 74 Nitrogen metabolism ... 77 Energy metabolism ... 78 Cell mobility and chemotaxis ... 78 Diversity of predicted stress tolerance mechanisms ... 78 Maintaining the intracellular pH homeostasis ... 78 Coping with high metal loads ... 79 Oxidative stress management ... 79 IDENTIFICATION OF POTENTIAL DRIVING FORCES OF GENOME EVOLUTION ... 80 Prediction of mobile genetic elements ... 81 Linking the differences in the predicted metabolic profiles to the genome architectures ... 82 Gene cluster associated with flagella formation and chemotaxis in “F. myxofaciens” ... 84 Gene clusters associated with the utilization of alternative nitrogen sources ... 86 Gene cluster associated with carboxysome formation in “F. myxofaciens” and OTU-2 strain JA12 ... 87 Putative genomic islands in the OTU-strain JA12 ... 89 CRISPR/Cas in “F. myxofaciens” Z-31: a defense mechanism against foreign DNA ... 91 DISCUSSION ... 92 THE COMPARISON OF THEIR METABOLIC PROFILES INDICATES THE EXISTENCE OF OTU- AND STRAIN-SPECIFIC FEATURES ... 92 GENOME EVOLUTION OF THE “FERROVUM” STRAINS APPEARS TO BE DRIVEN BY HORIZONTAL GENE TRANSFER AND GENOME REDUCTION ... 94 Horizontal gene transfer ... 94 Mechanisms of genome reduction ... 95 CONCLUDING REMARKS ... 98 ACKNOWLEDGMENTS ... 98 AUTHOR CONTRIBUTIONS ... 98 CHAPTER V ... 99 ABSTRACT ... 100 INTRODUCTION ... 100 METHODS ... 102 CULTIVATION OF THE “FERROVUM”-CONTAINING MIXED CULTURE JA12 ... 102 Up-scaling of pre-cultures for the transcriptome study ... 103 Experimental setup of the transcriptome study ... 103 Cell harvest from large culture volumes ... 106 EXTRACTION OF TOTAL RNA ... 106 LIBRARY CONSTRUCTION AND SEQUENCING ... 107 DATA ANALYSIS ... 107 Processing of raw data ... 107 Quantification of gene expression levels ... 108 Functional analysis ... 108 RESULTS ... 108 CULTIVATION OF THE MIXED CULTURE JA12 IN THE MULTIPLE BIOREACTOR SYSTEM ... 108 Growth monitoring ... 108 Microbial composition ... 111 RNA SEQUENCING (RNA-SEQ) ... 112 FUNCTIONAL CATEGORIZATION OF EXPRESSED GENES ... 113 Functional assignment of highly expressed genes ... 117 Functional assignment of poorly expressed genes ... 121 COMPARISON OF EXPRESSION LEVELS OF GENES PREDICTED TO BE INVOLVED IN OXIDATIVE STRESS MANAGEMENT ... 122 DISCUSSION ... 124 METABOLIC PATHWAYS RELEVANT UNDER CULTURE CONDITIONS MIMICKING THE NATURAL CONDITIONS IN THE MINE WATER TREATMENT PLANT ... 125 Novel insights into the energy metabolism of “Ferrovum” sp. JA12 ... 125 Insights from poorly expressed genes ... 126 VARIATION OF GENE EXPRESSION PATTERNS UNDER THE DIFFERENT CONDITIONS ... 128 EVALUATION OF THE EXPERIMENTAL SET-UP INVOLVING THE MULTIPLE BIOREACTOR SYSTEM ... 129 CONCLUDING REMARKS: SIGNIFICANCE OF THE PRESENT TRANSCRIPTOME STUDY ... 130 ACKNOWLEDGMENTS ... 131 AUTHOR CONTRIBUTIONS ... 131 CHAPTER VI ... 133 ABSTRACT ... 133 EXTENDED INSIGHTS INTO THE FERROUS IRON OXIDATION IN BETAPROTEOBACTERIA ... 133 MECHANISMS OF PHYLOGENETIC AND METABOLIC DIVERSIFICATION WITHIN THE GENUS “FERROVUM” ... 136 INFERRED ROLES OF “FERROVUM” SPP. IN THE MICROBIAL NETWORK OF THE MINE WATER TREATMENT PLANT ... 138 PERSPECTIVES ... 143 REFERENCES ... 145 SUPPLEMENTARY MATERIAL ... 170 DATA DVD ... 170 SUPPLEMENTARY MATERIAL FOR CHAPTER III ... 171 NUCLEOTIDE ACCESSION NUMBERS ... 171 PHYLOGENETIC ANALYSIS ... 171 GENOME PROPERTIES ... 173 NUTRIENT ASSIMILATION ... 174 Carbon metabolism ... 174 FERROUS IRON OXIDATION ... 176 HORIZONTAL GENE TRANSFER ... 179 SUPPLEMENTARY MATERIAL FOR CHAPTER IV ... 180 PHYLOGENETIC ANALYSIS ... 180 ASSIGNMENT OF PROTEIN-CODING GENES TO THE COG CLASSIFICATION ... 180 COMPARISON OF THE CENTRAL METABOLISM ... 181 Predicted metabolic potential of the four “Ferrovum” strains ... 181 Genes predicted to be involved in the central metabolism, energy metabolism, cell motility and stress management in the four “Ferrovum” strains ... 183 PREDICTED MOBILE GENETIC ELEMENTS IN THE GENOMES OF THE FOUR “FERROVUM” STRAINS ... 184 THE FLAGELLA AND CHEMOTAXIS GENE CLUSTER ... 184 THE UREASE GENE CLUSTER ... 185 THE CARBOXYSOME GENE CLUSTER ... 186 PUTATIVE GENOMIC ISLANDS IN “FERROVUM” SP. JA12 ... 187 Gene content of the genomic islands ... 187 Flanking sites of the putative genomic islands 1 and 2 ... 188 SUPPLEMENTARY MATERIAL FOR CHAPTER V ... 189 ORGANIZATION AND OPERATION OF THE LABFORS 5 MULTIPLE BIOREACTOR SYSTEM ... 189 INVESTIGATION OF THE MICROBIAL COMPOSITION IN THE IRON OXIDIZING MIXED CULTURE JA12 ... 192 SUPPLEMENTARY DATA OF THE TRANSCRIPTOME DATA ANALYSIS ... 193 RNA-Seq statistics ... 193 Expression strength of protein-coding genes ... 194 Expression of genes involved in carboxysome formation ... 197 Expression of a ribosomal proteins-encoding gene cluster ... 199 Expression of a gene cluster presumably involved in ferrous iron oxidation ... 202 Lowest expressed genes ... 205 Expression of genes predicted to be involved in oxidative stress response ... 206 ACKNOWLEDGMENTS ... 208 COLLEAGUES ... 208 ERFOLGSTEAM “JUNGE FRAUEN AN DIE SPITZE” (“YOUNG WOMEN TO THE TOP“) ... 208 FAMILY AND FRIENDS ... 209 FUNDING ... 209 CURRICULUM VITAE ... 210 LIST OF PUBLICATIONS ... 212 RESEARCH ARTICLES ... 212 CONFERENCE PROCEEDINGS ... 212 ORAL PRESENTATIONS AND POSTERS ... 213
6

Genomweite Transkriptionsanalyse von Methanosarcina mazei Gö1 / Genomewide transcriptional Analysis of Methanosarcina mazei Gö1

Hovey, Raymond Leonard 06 November 2003 (has links)
No description available.
7

Komparative Genomanalyse zur Stammoptimierung produktionsnaher Bacillus-Stämme / Comparative genome analysis of production-related Bacillus strains

Wollherr, Antje 26 October 2010 (has links)
No description available.
8

Die vollständige Entschlüsselung der Genomsequenz des Tetanus-Erregers <i>Clostridium tetani</i> und die Analyse seines genetischen Potentials / The complete genome sequence of the causative agent of tetanus disease, <i>Clostridium tetani</i>, and the analysis of its genes

Brüggemann, Holger 30 January 2003 (has links)
No description available.

Page generated in 0.073 seconds