• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

D-bar and Dirac Type Operators on Classical and Quantum Domains

McBride, Matthew Scott 29 August 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / I study d-bar and Dirac operators on classical and quantum domains subject to the APS boundary conditions, APS like boundary conditions, and other types of global boundary conditions. Moreover, the inverse or inverse modulo compact operators to these operators are computed. These inverses/parametrices are also shown to be bounded and are also shown to be compact, if possible. Also the index of some of the d-bar operators are computed when it doesn't have trivial index. Finally a certain type of limit statement can be said between the classical and quantum d-bar operators on specialized complex domains.
22

Théorie spectrale inverse pour les opérateurs de Toeplitz 1D / Inverse spectral theory for 1D Toeplitz operators

Le Floch, Yohann 19 June 2014 (has links)
Dans cette thèse, nous prouvons des résultats de théorie spectrale, directe et inverse, dans la limite semi-classique, pour les opérateurs de Toeplitz autoadjoints sur les surfaces. Pour les opérateurs pseudo-différentiels, les résultats en question sont déjà connus, et il est naturel de vouloir les étendre aux opérateurs de Toeplitz. Les conditions de Bohr-Sommerfeld usuelles, qui caractérisent les valeurs propres proches d'une valeur régulière du symbole principal, ont été obtenues il y a quelques années seulement pour les opérateurs de Toeplitz. Notre contribution consiste en l'extension de ces conditions près de valeurs critiques non dégénérées. Nous traitons le cas d'une valeur critique elliptique à l'aide d'une technique de forme normale ; l'opérateur modèle est la réalisation de l'oscillateur harmonique sur l'espace de Bargmann, dont le spectre est bien connu. Dans le cas d'une valeur critique hyperbolique, la forme normale ne suffit plus et nous complétons l'étude en faisant appel à des arguments dus à Colin de Verdière et Parisse, à qui l'on doit le résultat analogue dans le cas pseudo-différentiel. Enfin, nous établissons un résultat de théorie spectrale inverse pour les opérateurs de Toeplitz autoadjoints sur les surfaces ; plus précisément, nous montrons que sous certaines hypothèses génériques, la connaissance du spectre à l'ordre deux dans la limite semi-classique permet de retrouver le symbole principal à symplectomorphisme près. Ce résultat s'appuie en grande partie sur l'écriture des règles de Bohr-Sommerfeld. / In this thesis, we prove some direct and inverse spectral results, in the semiclassical limit, for self-adjoint Toeplitz operators on surfaces. For pseudodifferential operators, these results are already known, and it is natural to expect their extension to the Toeplitz setting. The usual Bohr-Sommerfeld conditions, characterizing the eigenvalues close to a regular value of the principal symbol, have been obtained a few years ago for Toeplitz operators. Our contribution consists in extending these conditions near nondegenerate critical values. We handle the case of an elliptic value thanks to a normal form technique; the model operator is the realization of the harmonic oscillator in the Bargmann space, whose spectrum is well-known. In the case of a hyperbolic value, the normal form is no longer sufficient and we conclude by using additional arguments due to Colin de Verdière and Parisse, who derived the analogous result for pseudodifferential operators. Finally, we write an inverse spectral result for self-adjoint Toeplitz operators on surfaces; more precisely, we show that under some generic hypotheses, the knowledge of the spectrum up to order two in the semiclassical limit allows to recover the principal symbol up to symplectomorphism. This result essentially relies on Bohr-Sommerfeld rules.
23

Quantum manifestations of the adiabatic chaos of perturbed susperintegrable Hamiltonian systems / Manifestations quantiques du chaos adiabatique de systèmes hamiltoniens superintégrables perturbées

Fontanari, Daniele 25 November 2013 (has links)
Dans cette thèse nous étudions un système quantique, obtenu comme un analogue d'un système classique superintégrable perturbé au moyen de la quantification géométrique. Notre objectif est de mettre en évidence la présence des phénomènes analogues à ceux qui caractérisent la superintégrabilité classique, notamment la coexistence des mouvements réguliers et chaotiques liés aux effets des résonances ainsi que la régularité du régime non-résonant. L'analyse est effectuée par l'étude des distributions du Husimi des états quantiques sélectionnés, avec une attention particulière aux états stationnaires et à l'évolution des états cohérents. Les calculs sont effectués en utilisant les méthodes numériques et les méthodes perturbatives. Les calculs sont effectués en utilisant les méthodes numériques et les méthodes perturbatives. Bien que cette thèse devrait être considérée comme une étude préliminaire, dont l'objectif est de créer le socle des études futures, nos résultats donnent des indications intéressantes sur la dynamique quantique. Par exemple, il est démontré comment les résonancees classiques exercent une influence considérable sur le spectre du système quantique et comment il est possible, dans le comportement quantique, de trouver une trace de l'invariant adiabatique dans le régime de résonance. / The abundance, among physical models, of perturbations of superintegrable Hamiltonian systems makes the understanding of their long-term dynamics an important research topic. While from the classical standpoint the situation, at least in many important cases, is well understood through the use of Nekhoroshev stability theorem and of the adiabatic invariants theory, in the quantum framework there is, on the contrary, a lack of precise results. The purpose of this thesis is to study a perturbed superintegrable quantum system, obtained from a classical counterpart by means of geometric quantization, in order to highlight the presence of indicators of superintegrability analogues to the ones that characterize the classical system, such as the coexistence of regular motions with chaotic one, due to the effects of resonances, opposed to the regularity in the non resonant regime. The analysis is carried out by studying the Husimi distributions of chosen quantum states, with particular emphasis on stationary states and evolved coherent states. The computation are performed using both numerical methods and perturbative schemes. Although this should be considered a preliminary work, the purpose of which is to lay the fundations for future investigations, the results obtained here give interesting insights into quantum dynamics. For instance, it is shown how classical resonances exert a considerable influence on the spectrum of the quantum system and how it is possible, in the quantum behaviour, to find a trace of the classical adiabatic invariance in the resonance regime. / L'abbondanza, fra i modelli fisici, di perturbazioni di sistemi Hamiltoniani superintegrabili rende la comprensione della loro dinamica per tempi lunghi un importante argomento diricerca. Mentre dal punto di vista classico la situazione, perlomeno in molti case importanti, è ben compresa grazie all'uso del teorema di stabilità di Nekhoroshev e della teoria degli invariantiadiabatici, nel caso quantistico vi è, al contrario, una mancanza di risultati precisi. L'obiettivo di questa tesi è di studiare un sistema superintegrabile quantistico, ottenuto partendo da un corrispettivo classico tramite quantizzazione geometrica, al fine di evidenziare la presenza di indicatori di supertintegrabilità analoghi a quelliche caratterizzano il sistema classico, come la coesistenza di moti regolari e caotici, dovuta all'effetto delle risonanze, in contrapposizione con la regolarità nel regime non risonante. L'analisi è condotta studiando le distribuzioni di Husimi di stati quantistici scelti, con particolare enfasi posta sugli stati stazionari e sugli stati coerenti evoluti. I calcoli sono effettuati sia utilizzando tecniche numeriche che schemi perturbativi. Pur essendo da considerardi questo un lavoro preliminare, il cui compito è di porre le fondamenta per analisi future, i risultati qui ottenuti offrono interessanti spunti sulla dinamica quantistica. Per esempio è mostrato come le risonanze classiche abbiano un chiaro effeto sullo spettro del sistema quantistico, ed inoltre comesia possibile trovare una traccia, nel comportamento quantistico, dell'invarianza adiabatica classica nel regime risonante.

Page generated in 0.295 seconds