Spelling suggestions: "subject:"geometrical exact""
11 |
Simulation numérique du processus d’assemblage de câbles flexibles en grands déplacements / Numerical simulation of the assembly process of flexible cables under large displacementsCottanceau, Emmanuel 10 April 2018 (has links)
Avec l’essor de l’électronique embarquée, les câbles électriques constituentune part importante des pièces automobiles tandis que l’espace à bord n’a cessé de diminuer. Leur flexibilité requiert la prédiction de leur déformation durant leur montage afin d’éviter le contact avec d’autres pièces du véhicule et leur endommagement. Les outils actuels ne permettent pas une prédiction assez réaliste et précise de leur comportement, nécessaire dans un volume de travail très restreint. Les étapes de montage sont donc validées via la réalisation de maquettes réelles coûteuses. Cette thèsea pour but d’améliorer la simulation numérique de ces pièces souples. Nous proposonsici un code de simulation 3D basé sur un modèle de poutre géométriquement exact résolu par la méthode des éléments finis. Son originalité tient dans le couplage des quaternions pour modéliser les rotations 3D et de la méthode asymptotique numérique pour la continuation du système non linéaire qui lui confère une grande robustesse. Un banc d’essai permettant l’identification des paramètres homogénéisés nécessaires au modèle numérique et sa validation par comparaison de la géométrie finale et du chemin d’équilibre est présenté. Combinés à des développements analytiques sur les modèles de poutres avec cisaillement, les essais mènent à une évaluation critique du modèle deTimoshenko 3D pour la représentation des torons de câbles. / With on-board electronics expansion, electrical cables are an essential partof automotive pieces and the space on board has plummeted. Their flexibility requires to predict their deformation during vehicle assembly in order to avoid the contact with other pieces and damaging. Current numerical tools do not allow a realistic and accurate prediction, which is necessary in the obstructed car space. Assembly steps thus are validated on costly physical mock-ups. This thesis aims at improving numerical simulation of these flexible pieces. We herein propose a 3D algorithm based on a geometrically exact beam model solved by the finite element method. This work’s originality stands in coupling quaternions as rotational parameters and the asymptotic numerical method as nonlinear solver which results in a very robust algorithm. A test bench designed to identify the homogenized beam parameters of the numerical model and to validate it by offering a comparison on the final geometry and the equilibrium path is presented. Analytical developments on shear beams and the results of these experimental tests lead to a critical evaluation of the 3D Timoshenko model for representing stranded cables.
|
12 |
Improved Numerical And Numeric-Analytic Schemes In Nonlinear Dynamics And Systems With Finite RotationsGhosh, Susanta 01 1900 (has links)
This thesis deals with different computational techniques related to some classes of nonlinear response regimes of engineering interest. The work is mainly divided into two parts. In the first part different numeric-analytic integration techniques for nonlinear oscillators are developed. In the second part, procedures for handling arbitrarily large rotations are addressed and a few novel developments are reported in the process.
To begin the first part, we have proposed an explicit numeric-analytic technique, based on the Adomian decomposition method, for integrating strongly nonlinear oscillators. Numerical experiments suggest that this method, like most other numerical techniques, is versatile and can accurately solve strongly nonlinear and chaotic systems with relatively larger step-sizes. It is then demonstrated that the procedure may also be effectively employed for solving two-point boundary value problems with the help of a shooting algorithm. This has been followed up with the derivation and numerical exploration of variants of a recently developed numeric-analytic technique, the multi-step transversal linearization (MTrL), in the context of nonlinear oscillators of relevance in engineering dynamics. A considerable generalization and improvement over the original form of a MTrL strategy is achieved in this study. Finally, we have used the concept of MTrL method on the nonlinear variational (rate) equation corresponding to a nonlinear oscillator and thus derive another family of numeric-analytic techniques, presently referred to as the multi-step tangential linearization (MTnL). A comparison of relative errors through the MTrL and MTnL techniques consistently indicate a superior quality of approximation via the MTrL route.
In the second part of the thesis, a scheme for numerical integration of rigid body rotation is proposed using only rudimentary tensor analysis. The equations of motion are rewritten in terms of rotation vectors lying in same tangent spaces, thereby facilitating vector space operations consistent with the underlying geometric structure of rotation. One of the most important findings of this part of the dissertation is that the existing constant-preserving algorithms are not necessarily accurate enough and may not be ideally applicable to cases wherein numerical accuracy is of primary importance. In contrast, the proposed rotation-algorithms, the higher order ones in particular, are significantly more accurate for conservative rotational systems for reasonably long time. Similar accuracy is expected for dissipative rotational systems as well. The operators relating rotation variables corresponding to different tangent spaces are also investigated and this should provide further insight into the understanding of rotation vector parametrization.
A rotation update is next proposed in terms of rotation vectors. This update, employed along with interpolation of relative rotations, gives a strain-objective and path independent finite element implementation of a geometrically exact beam. The method has the computational advantage of requiring considerably less nodal variables due to the use of rotation vector parametrization. We have proposed a new isoparametric interpolation of nodal quaternions for computing the rotation field within an element. This should be a computationally efficient alternative to the interpolation of local rotations. It has been proved that the proposed interpolation of rotation leads to the objectivity of strain measures. Several numerical experiments are conducted to demonstrate the frame invariance, path-independence and other superior aspects of the present approach vis-`a-vis the existing methods based on the rotation vector parametrization. It is emphasized that, in order to develop an objective finite element formulation, the use of relative rotation is not mandatory and an interpolation of total rotation variables conforming with the rotation manifold should suffice.
|
13 |
Towards multidisciplinary design optimization capability of horizontal axis wind turbinesMcWilliam, Michael Kenneth 13 August 2015 (has links)
Research into advanced wind turbine design has shown that load alleviation strategies like bend-twist coupled blades and coned rotors could reduce costs. However these strategies are based on nonlinear aero-structural dynamics providing additional benefits to components beyond the blades. These innovations will require Multi-disciplinary Design Optimization (MDO) to realize the full benefits.
This research expands the MDO capabilities of Horizontal Axis Wind Turbines. The early research explored the numerical stability properties of Blade Element Momentum (BEM) models. Then developed a provincial scale wind farm siting models to help engineers determine the optimal design parameters.
The main focus of this research was to incorporate advanced analysis tools into an aero-elastic optimization framework. To adequately explore advanced designs with optimization, a new set of medium fidelity analysis tools is required. These tools need to resolve more of the physics than conventional tools like (BEM) models and linear beams, while being faster than high fidelity techniques like grid based computational fluid dynamics and shell and brick based finite element models. Nonlinear beam models based on Geometrically Exact Beam Theory (GEBT) and Variational Asymptotic Beam Section Analysis (VABS) can resolve the effects of flexible structures with anisotropic material properties. Lagrangian Vortex Dynamics (LVD) can resolve the aerodynamic effects of novel blade curvature.
Initially this research focused on the structural optimization capabilities. First, it developed adjoint-based gradients for the coupled GEBT and VABS analysis. Second, it developed a composite lay-up parameterization scheme based on manufacturing processes.
The most significant challenge was obtaining aero-elastic optimization solutions in the presence of erroneous gradients. The errors are due to poor convergence properties of conventional LVD. This thesis presents a new LVD formulation based on the Finite Element Method (FEM) that defines an objective convergence metric and analytic gradients. By adopting the same formulation used in structural models, this aerodynamic model can be solved simultaneously in aero-structural simulations. The FEM-based LVD model is affected by singularities, but there are strategies to overcome these problems. This research successfully demonstrates the FEM-based LVD model in aero-elastic design optimization. / Graduate / 0548 / pilot.mm@gmail.com
|
14 |
Contribution à la modélisation du comportement dynamique des paliers à roulements de réducteurs aéronautiques / Contribution to the dynamic modeling of rolling bearings of aeronautical gearboxesBovet, Christophe 07 May 2015 (has links)
La quête de minimisation du ratio poids-puissance, omniprésente dans l'industrie aéronautique, conduit à une plus grande souplesse structurelle des boîtes de transmission de puissance d'hélicoptères.Cette souplesse structurelle, associée aux sollicitations sévères mises en jeu, entraîne des déformations non négligeables des arbres et carters, et nuit naturellement à la tenue en service des roulements.S'il n’est pas maîtrisé, le désalignement des portées de roulements accroît fortement les efforts vus par la cage et peut conduire à sa rupture en fatigue.Le travail proposé s'intéresse à la modélisation du comportement dynamique des roulements de réducteurs aéronautiques et vise plus particulièrement à anticiper ce mode de ruine.Le modèle développé permet d'estimer les sollicitations de la cage en fonctionnement.Ces informations, précieuses aux ingénieurs, permettront de mieux maîtriser, et donc d'optimiser le processus de dimensionnement des roulements. / The quest for minimizing the power to weight ratio, omnipresent in the aircraft industry, has led to greater structural flexibility of helicopter gearboxes.This increasing flexibility combined with the severe loads which it involves, causes significant strains on shafts and housings, and may be detrimental to rolling bearing service life expectancy.An unchecked misalignment of bearing seats greatly increases cage stresses and it may cause its premature fatigue failure.The present work focuses on modeling the dynamic behavior of rolling bearings of aeronautical gearboxes and it specifically anticipates this failure mode.The model developed is able to estimate cage stresses in operation. This information is valuable to engineers, it allows a better control and thus an optimization of the rolling bearings design process.
|
Page generated in 0.1024 seconds