Spelling suggestions: "subject:"fotovisual analytics"" "subject:"audiovisual analytics""
1 |
Visual Storytelling Interacting in School : Learning Conditions in the Social Science Classroom / Visual storytelling interagerar i skolan : Lärandevillkor i klassrum med samhällsorienterad undervisningStenliden, Linnéa January 2014 (has links)
The aim of this compilation thesis is to understand how technology for visual storytelling can be shaped and used in relation to social science education in primary school, but also how social dimensions, technical and other matters create emerging learning conditions in such an educational setting. The visual storytelling technology introduced and used in the study is ‘the Statistics eXplorer platform, a geovisual analytics. The choice of theoretical perspectives to inform and guide the study is a socio-cultural view of human action, but also actor network theory is used to take account also of activities of technology and other matters. The study builds on three empirical materials that generate data from 16 social science teachers, and 126 students from five social science classrooms, in three Swedish primary schools. It contains field notes from the introduction of the technology; focusgroup interviews with teachers; think-aloud interviews with students and two kinds of video recordings from the classrooms (with an ordinary video camera and with software that capture activities at the computer screen, students’ activities and the audio as well). The analysis shows that the visual storytelling technology is shaped in relevant ways for social science teachers. The analysis also illustrates that the visual educational material are usable for primary school students in their social science education. They illustrate further how teachers, students, technology, information, tasks, data types, etc. together and in in close relation create highly complex learning conditions. The technology can therefore be seen as appropriate for the educational practice, but the complexity together with students’ apprehension of how to announce knowledge distribute severe problem spaces in the learning activities. The technology can therefore be assumed as a catalyst for educational change, but to achieve its potentials, reflections on didactic design and knowledge formation is requested to support the quality of students’ knowledge in relation to visual analysis. / Syftet i denna avhandling är, att förstå hur teknik för visual storytelling kan vara utformad och användas i relation till samhällsorienterande undervisning i grundskolan (årskurs 4 – 6), men också hur sociala dimensioner, tekniska och andra faktorer skapar villkor för lärande i ett sådant undervisningssammanhang. I studien introduceras datavisualiseringsteknik för visual storytelling: ‘the Statistics eXplorer platform’, ett geovisual analytics. Den teoretiska referensramen har sin grund i ett social konstruktionistiskt synsätt Ett socio-kulturellt perspektiv används för att analysera social aktivitet, men även aktörnätverks teori används för att analysera både sociala och materiella aktörer. Avhandlingen bygger på tre empiriska material som genereras med hjälp av 16 lärare i samhällsorienterande ämnen, och 126 elever tillhörande fem olika klassrum i tre olika svenska grundskolor. Materialet innehåller: fältanteckningar ifrån introduktion av tekniken, fokusgrupps-intervjuer med lärare, ‘tänka högt’-intervjuer med elever och två sorters videoinspelningar ifrån klassrum (dels med vanlig videokamera och dels med mjukvara som spelar in aktiviteter på datorskärmen och elevernas aktiviteter vid datorn, liksom ljudet). Analysen visar hur lärare, elever, teknik, information, uppgifter, data-typer, etc. tillsammans, i nära samarbete i de studerade klassrummen, skapar mycket komplexa villkor för lärande. De läraktiviteter som uppstår i klassrummen där teknik för visuell analys inkluderas, erbjuder elever support att: hantera stora datamängder, bli delaktiga i olika läraktiviteter och uppnå olika utbildningsmål, men även andra sorters elevrelaterade mål. Därför kan tekniken sägas vara relevant för denna sorts undervisning. Vidare visar analysen hur komplexiteten tillsammans med elevernas uppfattningar av hur kunskap skall visas, skapar påtagliga ‘problem spaces’ i läraktiviteterna. Lärandevillkoren kan därför förstås som en klassrumspraktik som inte fullt ut överensstämmer med den introducerade teknikens erbjudanden för visuell analys. Därför efterfrågas en förändrad syn på didaktisk design och elevers kunskapsformering, vilket blir betydelsefullt för kunskapens kvalitet i förhållande till visuell analys.
|
2 |
Architecture and Applications of a Geovisual Analytics FrameworkHo, Quan January 2013 (has links)
The large and ever-increasing amounts of multi-dimensional, multivariate, multi-source, spatio-temporal data represent a major challenge for the future. The need to analyse and make decisions based on these data streams, often in time-critical situations, demands integrated, automatic and sophisticated interactive tools that aid the user to manage, process, visualize and interact with large data spaces. The rise of `Web 2.0', which is undisputedly linked with developments such as blogs, wikis and social networking, and the internet usage explosion in the last decade represent another challenge for adapting these tools to the Internet to reach a broader user community. In this context, the research presented in this thesis introduces an effective web-enabled geovisual analytics framework implemented, applied and verified in Adobe Flash ActionScript and HTML5/JavaScript. It has been developed based on the principles behind Visual Analytics and designed to significantly reduce the time and effort needed to develop customized web-enabled applications for geovisual analytics tasks and to bring the benefits of visual analytics to the public. The framework has been developed based on a component architecture and includes a wide range of visualization techniques enhanced with various interaction techniques and interactive features to support better data exploration and analysis. The importance of multiple coordinated and linked views is emphasized and a number of effective techniques for linking views are introduced. Research has so far focused more on tools that explore and present data while tools that support capturing and sharing gained insight have not received the same attention. Therefore, this is one of the focuses of the research presented in this thesis. A snapshot technique is introduced, which supports capturing discoveries made during the exploratory data analysis process and can be used for sharing gained knowledge. The thesis also presents a number of applications developed to verify the usability and the overall performance of the framework for the visualization, exploration and analysis of data in different domains. Four application scenarios are presented introducing (1) the synergies among information visualization methods, geovisualization methods and volume data visualization methods for the exploration and correlation of spatio-temporal ocean data, (2) effective techniques for the visualization, exploration and analysis of self-organizing network data, (3) effective flow visualization techniques applied to the analysis of time-varying spatial interaction data such as migration data, commuting data and trade flow data, and (4) effective techniques for the visualization, exploration and analysis of flood data.
|
3 |
Development of a geovisual analytics environment using parallel coordinates with applications to tropical cyclone trend analysisSteed, Chad A 13 December 2008 (has links)
A global transformation is being fueled by unprecedented growth in the quality, quantity, and number of different parameters in environmental data through the convergence of several technological advances in data collection and modeling. Although these data hold great potential for helping us understand many complex and, in some cases, life-threatening environmental processes, our ability to generate such data is far outpacing our ability to analyze it. In particular, conventional environmental data analysis tools are inadequate for coping with the size and complexity of these data. As a result, users are forced to reduce the problem in order to adapt to the capabilities of the tools. To overcome these limitations, we must complement the power of computational methods with human knowledge, flexible thinking, imagination, and our capacity for insight by developing visual analysis tools that distill information into the actionable criteria needed for enhanced decision support. In light of said challenges, we have integrated automated statistical analysis capabilities with a highly interactive, multivariate visualization interface to produce a promising approach for visual environmental data analysis. By combining advanced interaction techniques such as dynamic axis scaling, conjunctive parallel coordinates, statistical indicators, and aerial perspective shading, we provide an enhanced variant of the classical parallel coordinates plot. Furthermore, the system facilitates statistical processes such as stepwise linear regression and correlation analysis to assist in the identification and quantification of the most significant predictors for a particular dependent variable. These capabilities are combined into a unique geovisual analytics system that is demonstrated via a pedagogical case study and three North Atlantic tropical cyclone climate studies using a systematic workflow. In addition to revealing several significant associations between environmental observations and tropical cyclone activity, this research corroborates the notion that enhanced parallel coordinates coupled with statistical analysis can be used for more effective knowledge discovery and confirmation in complex, real-world data sets.
|
4 |
Konzeption und Entwicklung eines automatisierten Workflows zur geovisuellen Analyse von georeferenzierten Textdaten(strömen) / Microblogging Content / Concept and development of an automated workflow for geovisual analytics of georeferenced text data (streams) / microblogging contentGröbe, Mathias 27 October 2016 (has links) (PDF)
Die vorliegende Masterarbeit behandelt den Entwurf und die exemplarische Umsetzung eines Arbeitsablaufs zur Aufbereitung von georeferenziertem Microblogging Content. Als beispielhafte Datenquelle wurde Twitter herangezogen. Darauf basierend, wurden Überlegungen angestellt, welche Arbeitsschritte nötig und mit welchen Mitteln sie am besten realisiert werden können.
Dabei zeigte sich, dass eine ganze Reihe von Bausteinen aus dem Bereich des Data Mining und des Text Mining für eine Pipeline bereits vorhanden sind und diese zum Teil nur noch mit den richtigen Einstellungen aneinandergereiht werden müssen. Zwar kann eine logische Reihenfolge definiert werden, aber weitere Anpassungen auf die Fragestellung und die verwendeten Daten können notwendig sein.
Unterstützt wird dieser Prozess durch verschiedenen Visualisierungen mittels Histogrammen, Wortwolken und Kartendarstellungen. So kann neues Wissen entdeckt und nach und nach die Parametrisierung der Schritte gemäß den Prinzipien des Geovisual Analytics verfeinert werden. Für eine exemplarische Umsetzung wurde nach der Betrachtung verschiedener Softwareprodukte die für statistische Anwendungen optimierte Programmiersprache R ausgewählt. Abschließend wurden die Software mit Daten von Twitter und Flickr evaluiert. / This Master's Thesis deals with the conception and exemplary implementation of a workflow for georeferenced Microblogging Content. Data from Twitter is used as an example and as a starting point to think about how to build that workflow.
In the field of Data Mining and Text Mining, there was found a whole range of useful software modules that already exist. Mostly, they only need to get lined up to a process pipeline using appropriate preferences. Although a logical order can be defined, further adjustments according to the research question and the data are required.
The process is supported by different forms of visualizations such as histograms, tag clouds and maps. This way new knowledge can be discovered and the options for the preparation can be improved. This way of knowledge discovery is already known as Geovisual Analytics. After a review of multiple existing software tools, the programming language R is used to implement the workflow as this language is optimized for solving statistical problems. Finally, the workflow has been tested using data from Twitter and Flickr.
|
5 |
Konzeption und Entwicklung eines automatisierten Workflows zur geovisuellen Analyse von georeferenzierten Textdaten(strömen) / Microblogging ContentGröbe, Mathias 13 October 2015 (has links)
Die vorliegende Masterarbeit behandelt den Entwurf und die exemplarische Umsetzung eines Arbeitsablaufs zur Aufbereitung von georeferenziertem Microblogging Content. Als beispielhafte Datenquelle wurde Twitter herangezogen. Darauf basierend, wurden Überlegungen angestellt, welche Arbeitsschritte nötig und mit welchen Mitteln sie am besten realisiert werden können.
Dabei zeigte sich, dass eine ganze Reihe von Bausteinen aus dem Bereich des Data Mining und des Text Mining für eine Pipeline bereits vorhanden sind und diese zum Teil nur noch mit den richtigen Einstellungen aneinandergereiht werden müssen. Zwar kann eine logische Reihenfolge definiert werden, aber weitere Anpassungen auf die Fragestellung und die verwendeten Daten können notwendig sein.
Unterstützt wird dieser Prozess durch verschiedenen Visualisierungen mittels Histogrammen, Wortwolken und Kartendarstellungen. So kann neues Wissen entdeckt und nach und nach die Parametrisierung der Schritte gemäß den Prinzipien des Geovisual Analytics verfeinert werden. Für eine exemplarische Umsetzung wurde nach der Betrachtung verschiedener Softwareprodukte die für statistische Anwendungen optimierte Programmiersprache R ausgewählt. Abschließend wurden die Software mit Daten von Twitter und Flickr evaluiert. / This Master's Thesis deals with the conception and exemplary implementation of a workflow for georeferenced Microblogging Content. Data from Twitter is used as an example and as a starting point to think about how to build that workflow.
In the field of Data Mining and Text Mining, there was found a whole range of useful software modules that already exist. Mostly, they only need to get lined up to a process pipeline using appropriate preferences. Although a logical order can be defined, further adjustments according to the research question and the data are required.
The process is supported by different forms of visualizations such as histograms, tag clouds and maps. This way new knowledge can be discovered and the options for the preparation can be improved. This way of knowledge discovery is already known as Geovisual Analytics. After a review of multiple existing software tools, the programming language R is used to implement the workflow as this language is optimized for solving statistical problems. Finally, the workflow has been tested using data from Twitter and Flickr.
|
Page generated in 0.0896 seconds