• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 4
  • 1
  • Tagged with
  • 25
  • 25
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Host-Microbial Symbiosis Within the Digestive Tract of Periplaneta americana.

Jahnes, Benjamin C. January 2020 (has links)
No description available.
22

Investigating the Effect of Phage Therapy on the Gut Microbiome of Gnotobiotic ASF Mice

Ganeshan, Sharita January 2019 (has links)
Mounting concerns about drug-resistant pathogenic bacteria have rekindled the interest in bacteriophages (bacterial viruses). As bacteria’s natural predators, bacteriophages offer a critical advantage over antibiotics, namely that they can be highly specific. This means that phage therapeutics can be designed to destroy only the infectious agent(s), without causing any harm to our microbiota. However, the potential secondary effects on the balance of microbiota through bacteriophage-induced genome evolution remains as one of the critical apprehensions regarding phage therapy. There exists a significant gap in knowledge regarding the direct and indirect effect of phage therapeutics on the microbiota. The aim of this thesis was to: (1) establish an in vivo model for investigation of the evolutionary dynamics and co-evolution of therapeutic phage and its corresponding host bacterium in the gut; (2) determine if phage therapy can affect the composition of the gut microbiota, (3) observe the differences of phage-resistant bacteria mutants evolved in vivo in comparison to those evolved in vitro. We used germ-free mice colonized with a consortium of eight known bacteria, known as the altered Schaedler flora (ASF). The colonizing strain of choice (mock infection) was a non-pathogenic strain E. coli K-12 (JM83) known to co-colonize the ASF model, which was challenged in vivo with T7 phage (strictly lytic). We compared the composition of the gut microbiota with that of mice not subject to phage therapy. Furthermore, the resistant mutants evolved in vivo and in vitro were characterized in terms of growth fitness and motility. / Thesis / Master of Applied Science (MASc) / Bacteriophages are viruses that infect bacteria. After their discovery in 1917, bacteriophages were a primary cure against infectious disease for 25 years, before being completely overshadowed by antibiotics. With the rise of antibiotic resistance, bacteriophages are being explored again for their antibacterial activity. One of the critical apprehensions regarding bacteriophage therapy is the possible perturbations to our microbiota. We set out to explore this concern using a simplified microbiome model, namely germ-free mice inoculated with only 8 bacteria plus a mock infection challenged with bacteriophage. We monitored this model for 9 weeks and isolated a collection of phage-resistant bacterial mutants from the mouse gut that developed post phage challenge, maintaining the community of mock infection inside the gut. A single dose of lytic phage challenge effectively decreased the mock infection without causing any extreme long-term perturbations to the gut microbiota.
23

Vývoj B buněk u prasat a úloha gama delta T lymfocytů při imunizaci naivního imunitního systému. / The development of swine B cells and the role of gama delta T lymphocytes in immunization of naive immune system.

Štěpánová, Kateřina January 2013 (has links)
Thesis summary The process of B cell lymphogenesis in swine remains uncertain. Some reports indicate that pigs belong to a group of animal that use ileal Peyers's patches (IPP) for the generation of B cells while others point to the possibility that the bone marrow is functional throughout life. The functional subpopulations of B cells in swine are also unknown. Together with other ruminants, and also birds, γδ T cells in swine may account for >70% of all T cells which is in apparent contrast with humans and mice. The purpose of this thesis was to address these discrepancies and unresolved issues. The results disprove the existing paradigm that the IPP is primary lymphoid tissue and that B cells develop in IPP in an antigen-independent manner. On the other hand, it shows that bone marrow is fully capable of B cell lymphogenesis and remains active at least for the same period of time as it had been speculated for the IPP. This thesis also identified functionally different subsets of porcine peripheral B cells, and shows that CD21 molecules can be expressed in differential forms. Finally, this thesis identifies two lineages of γδ T cells that differ in many functional and phenotype features. This finding may explain why γδ T cells constitute of minority of lymphocytes in circulation of humans and mice.
24

Úloha bakterií,mukózního imunitního syst=ému a jejich interakce v patogenezi zánětlivých střevních onemocnění / Role of bacteria and mucosal immune system and their interaction in the pathogenesis of inflammatory bowel disease

Du, Zhengyu January 2017 (has links)
Although the etiology and pathogenesis of inflammatory bowel disease (IBD) is not fully understood, it is generally accepted that the inflammation results from aberrant immune responses to antigens of gut microbiota in genetically susceptible individuals (Sartor et al., 2006). Alteration in intestinal microbiota has been found in IBD patients with increased abundance of certain bacteria and decreased abundance of others. Due to the complexity of the disease, multifaceted interactions between genetic factors, host immune response, gut microbiota and environment factors need to be taken into account. In this thesis, the pathogenesis of IBD was first reviewed in respect with the four factors mentioned above. Then we concentrated on the interaction between IBD-associated bacteria and mucosal immune system. We investigated the ability of mucosal-associated bacteria (MAB) from IBD patients to induce spontaneous colitis in germ-free (GF) mice and the impact of those bacteria on the development of dextran sulfate sodium (DSS)-colitis. Together with the analysis of the composition of gut microbiota of MAB colonized mice, we demonstrated the potential deleterious microbes were able to increase the susceptibility to DSS-colitis once they found a suitable niche. We revealed the mechanism of an E.coli strain...
25

The Relationship Between Gut Microbiota and Metabolites in the Expression of Generalized Anxiety Disorder

Thrasher, Devinne January 2020 (has links)
Anxiety disorders are the most prevalent psychiatric conditions within primary care, affecting up to 29% of people across their lifetime. Generalized Anxiety disorder (GAD) is frequently comorbid with Major Depressive Disorder (MDD), resulting in greater functional impairment. Gut microbiota have been shown to modulate brain chemistry and function, possibly also playing a role in the genesis of anxiety. Bacteria are also able to produce, or interact with the host metabolism of neuroactive substances, including classical neurotransmitters and trace amines, like octopamine, which although found in trace concentrations in the mammalian brain, can affect CNS function. Specifically, trace amines can affect catecholamine release, reuptake and biosynthesis, and modulate dopamine and serotonin metabolism. We investigated whether microbiota from patients with GAD with no signs of immune activation can alter behaviour in gnotobiotic mice and whether this is accompanied by changes in metabolites within the gastrointestinal tract. Germ-free NIH Swiss mice (n=35) were colonized with microbiota from either a GAD patient (n=18) with severe anxiety, comorbid depression, and low serum and fecal octopamine, or an age and sex-matched healthy control (HC) (n=17). Three weeks post- colonization, mouse behaviour was assessed by standard psychometric tests. Emotionality z-scores were calculated to provide a robust integrated behavioural assessment. Microbiota profiles were assessed by 16S rRNA based Illumina, fecal β-defensin-3 level was measured by ELISA. After sacrifice, mouse brain BDNF and GDNF expression was assessed by immunofluorescence, and gene expression in the hippocampus, amygdala, and olfactory bulbs was assessed by Nanostring. Stool and cecum metabolites were measured in all colonized mice by multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS). There were no differences in fecal β-defensin levels between mice colonized with GAD microbiota as compared to mice colonized with HC microbiota. However, GAD mice exhibited greater anxiety and depressive-like behavior compared to HC mice in the digging and tail suspensions tests. Behavioural z-scoring across all six standard psychometric tests showed a significant increase in group emotionality score means of GAD-colonized mice compared to HC-colonized mice. Mice colonized with microbiota from a GAD patient had distinct bacterial profiles from mice colonized with HC microbiota. Compared to HC mice, GAD mice had lower levels of dopamine, octopamine and acetylcholine in cecum contents. Furthermore, GAD mice had higher expression of BDNF in the amygdala, lower expression of BDNF in the hippocampus, and lower expression of GDNF in the midbrain. GAD mice also had lower expression of CCR2 in the hippocampus, higher Cnlp/CAMP in the amygdala and olfactory bulb, and higher Nfkb1 in the olfactory bulb compared to HC mice. Our results suggest that microbiota from a selected patient with GAD has the ability to induce anxiety and depressive-like behavior, by mechanisms independent of immune system, likely by altered production of biogenic amines and neurotransmitters. / Thesis / Master of Science (MSc)

Page generated in 0.0442 seconds