• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rôle du facteur de terminaison de la traduction eRF3 (eukaryotic Release Factor 3) dans la stabilité des ARN messagers / The role of the translation termination factor eRF3 (eukaryotic Release Factor 3) in the messenger RNA stability

Jerbi Chaabnia, Soumaya 22 September 2015 (has links)
La désadénylation des ARNm fait intervenir les complexes de désadénylation PAN2-PAN3 et CCR4-NOT-TOB mais aussi le complexe de terminaison de la traduction eRF1-eRF3. Ces trois complexes ont la capacité d'interagir avec la protéine PABP. Cependant, le rôle d'eRF3 n'est pas clairement établi. Il a été décrit que les facteurs eRF3, PAN3 et TOB sont en compétition pour l'interaction avec PABP et qu'il y a un couplage entre la terminaison de la traduction et la désadénylation assuré par eRF3. Chez l'homme, le gène eRF3/GSPT1 présente 5 formes alléliques qui diffèrent par le nombre de répétitions de codons GGC à l'extrémité 5' du cadre de lecture (7, 9, 10, 11 et 12-GGC). Une corrélation entre l'allèle 12-GGC et le risque de développement de cancer du sein et de l'estomac a été mis en évidence. Notre objectif est (i) d'améliorer notre compréhension du rôle d'eRF3 dans le processus de couplage traduction-dégradation des ARNm, (ii) de comprendre l'effet du polymorphisme de la région N-terminale d'eRF3 sur son interaction avec PABP. A travers la méthode de résonnance plasmonique de surface (SPR), nous montrons que l'affinité de la forme allélique 12-GGC est 10 fois plus faible que celle d'eRF3a (10-GGC). Cette différence est essentiellement due à la plus faible association de la forme 12-GGC avec PABP. La plus faible affinité de la forme 12-GGC d'eRF3 entrainerait une dérégulation de la désadénylation au moins pour certains ARNm et pourrait ainsi promouvoir la prolifération cellulaire et la carcinogenèse. La région N-terminale d'eRF3 contenant la répétition de glycine joue un rôle crucial dans l'interaction eRF3-PABP, dans la désadénylation et donc dans la stabilité de l'ARNm. / The mRNA deadenylation involves the deadenylation complexes PAN2-PAN3 and CCR4-NOT-TOB and the translation termination complex eRF1-eRF3. All three proteins, eRF3, PAN3 and TOB, interact with the PABP protein. However, the role of eRF3 is still unclear. It has been reported that eRF3, TOB and PAN3 compete for the binding to PABP. Recently, it has been suggested that eRF3 may regulate mRNA deadenylation in a translation termination-coupled manner. In human, the gene eRF3/GSPT1, contains a trinucleotide GGC repeat in its 5’ end which lead to 5 allelic forms of the gene. There are five known alleles of this gene (7, 9, 10, 11 and 12-GGC). A strong correlation between the longest allele (12-GGC) and gastric and breast cancer development has been reported. Our project was (i) to improve our understanding on the role of eRF3 in the coupling of mRNA deadenylation with translation termination, (ii) to understand whether the GGC repeat polymorphism of eRF3 influences eRF3-PABP interaction. The kinetic measurements of eRF3-PABP interaction obtained by Surface Plasmon Resonance (SPR) show that the affinity of the allelic 12-GGC form is 10 fold lower than that of eRF3a (10-GGC). This decrease is mostly due to difference in the association rate of the complex. The weaker affinity of the 12-GGC allelic form may result in a deregulation of deadenylation, at least for some mRNAs, and thus, could promote cell proliferation and carcinogenesis. In fine, we show that the N-terminal region of eRF3 containing the glycine expansion plays a key role in the eRF3-PABP interaction, in the deadenylation process, and hence, in mRNA stability.
2

Functional characterization of the SLC38 transporters SNAT6, SNAT8 and SNAT10 using CRISPR-Cas9 knockout in vitro

Holmberg, Alfred January 2020 (has links)
There are currently over 430 known SLC transporters, over 30% of which have an unknown function. Compared to other transporter gene families, the SLC genes are relatively understudied with many orphan genes. SLC transporters have a high disease relevance and can be associated with many different diseases like gout, type 2 diabetes and different forms of cancer. SLC transporters also appear to be very druggable, thus offering a rare opportunity of an underexplored gene family, that can be linked to many diseases and seem to have a general druggability with small organic molecules. This thesis is evaluating three specific SLC transporters of the SLC38 family to discover their different roles and purposes. In this project CRISPR-Cas9 is used to knockout three SLC38 transporters, called SNAT6, SNAT8 and SNAT10. The cell-line used is HEK293 cells, as they are easy to transfect and are thought to express the three genes, however it is not certain that they do express the three SNAT genes. The project aims to optimize the method for best possible transfection by trying different protocols. A literature study is done on what the future experiments of the knocked-out cells could be, including; ensuring the HEK293 cells express the three genes, controlling the effectiveness of the transfection and analyzing the result of such a transfection. To confirm that the HEK293 cells do express the three SNATs a western blot assay could be performed. RT-qPCR is found to be useful in evaluating whether the knockouts are successful, by measuring if the three SNAT transporter proteins are present or not in the knocked-out cells. A metabolic analysis study to determine the result of the knockouts is also described as a future experiment. The experimental finding was a CRISPR-Cas9 transfection method that yielded enough RNA, enabling future experiments such as RT-qPCR.

Page generated in 0.0407 seconds