Spelling suggestions: "subject:"class meet"" "subject:"class meat""
1 |
Laserinduzierte Plasmaspektroskopie an Glas- und MineralschmelzenMatiaske, Anna-Maria 05 January 2015 (has links)
Eine umweltverträgliche Methode der Rückgewinnung anorganischer industrieller Abfallprodukte bietet die thermische Behandlung im elektrischen Lichtbogenofen. Hierbei wird der Abfallstoff geschmolzen und die enthaltenen Schwermetalloxide reduziert und von der mineralischen Phase abgetrennt. Der Prozess ist sehr energieaufwändig und noch nicht vollständig verstanden. Die laserinduzierte Plasmaspektroskopie (LIBS) soll als in situ-Messtechnik dabei helfen, das Verständnis zu verbessern und die Methode zu optimieren. In theoretischen Untersuchungen wurde gezeigt, dass die Güte von LIBS-Messungen durch Normierung auch mit einer gesättigten Linie eines Matrixelementes verbessert werden kann. Für LIBS-Messungen im elektrischen Lichtbogenofen wurde ein mobiles Doppelpuls-LIBS-System für industrielle Bedingungen entwickelt, getestet und optimiert. Als Modellsystem für Schlacken wurden dotierte Glasproben verwendet. Für festes und flüssiges Glas wurden Nachweisgrenzen im ppm-Bereich erreicht, was für die Gehalte in Schlackeproben ausreicht. Ferner wurden zwei Methoden entwickelt, Flüssigkeiten mit Hilfe von festen Standards zu quantifizieren. Um die Empfindlichkeit von LIBS zu verbessern, wurde Doppelpuls-LIBS untersucht. Es konnte eine Verstärkung des Signals um das 5,1-fache erreicht werden. Es konnten Emissionen der Moleküle CaCl, MgO, YO und ZrO in LIBS-Plasmen identifiziert und simuliert werden. Eine mögliche Verwendung der Molekülemissionen stellt die Quantifizierung sehr hoher Elementgehalte dar. Trotz der schwierigen experimentellen Bedingungen erwies sich das LIBS-System als empfindlich genug. Es wurde schrittweise Mangan- und Chromoxid zur Schmelze gegeben, was in einen linearen Anstieg der LIBS-Signale resultierte. Die Reduktion und Separation von Chrom gelang und konnte mit LIBS verfolgt werden, was durch die Referenzanalysen bestätigt wurde. / The reduction process in the electric arc furnace offers a sustainable method to recover industrial inorganic waste materials. The material is molten and the containing heavy metals are reduced and separated from the mineral phase. The energy consumption of the process is very high and the detailed reactions and dynamics are not yet fully understood. Laser induced breakdown spectroscopy can provide online-measurements inside a furnace, enabling us to increase understanding and optimize the process. In a theoretical investigation it has been shown that intensity fluctuations of LIBS can be compensated by normalizing the line used for analysis with a saturated line from a matrix element. For LIBS-measurements inside the electric arc furnace, a mobile double pulse LIBS-system designed for an industrial environment was built and tested. Glass was used as a model system for slags due to its lower melting point. Limits of detection in the ppm-region were achieved for solid and liquid glass, which is sufficient sensitivity for recycling slags. Furthermore, two methods were developed to quantify a liquid using solids as standards. To improve the sensitivity of LIBS, double-pulse measurements were conducted. Signal enhancements of up to 5.1 were achieved compared to single pulse. In the LIBS plasma emissions of molucules CaCl, MgO, YO and ZrO were identified and their emissions simulated. These emissions could be used to quantify large element concentrations. Despite the difficult experimental conditions the sensitivity of the LIBS-System has been found to be sufficient for recycling-slags. When stepwise adding manganese and chromium oxide to the melt, the respective LIBS intensity increased linearly. The reduction and separation of chromium was successful, which was confirmed by reference analysis.
|
2 |
Entwicklung neuer Schmelztechnologien für alkalifreie Erdalkali-Alumo-BorosilikatgläserBiennek, Lars 08 January 2020 (has links)
Das Cold-Top-Schmelzen alkalifreier Borosilikatgläser hat im Vergleich zu angepassten Gas-Sauerstoff-beheizten Schmelzaggregaten nach dem Hot-Top-Prinzip wesentliche Vorteile, wie minimale Verdampfung von borsäurehaltigen Komponenten, hohe flächenspezifische Schmelzleistungen und niedrige Betriebskosten. Als Schlüsseltechnologie gilt der neu entwickelte Mo-Heizstrahler, welcher trotz der extrem schlechten elektrischen Leitfähigkeit der Schmelze eine aus Sicht der Schmelze indirekte elektrische Beheizung realisieren lässt. Mit Hilfe dieser Heizstrahler-Technologie lässt sich die Schmelze auf > 1450 °C erhitzen, was die Voraussetzung für eine direkt elektrische Beheizung ist. Diese weltweit einzigartige Technologie ermöglicht die Herstellung von alkalifreien technischen Gläsern nach dem Cold-Top-Verfahren.
|
Page generated in 0.3441 seconds