• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 18
  • 9
  • 8
  • 6
  • Tagged with
  • 90
  • 90
  • 47
  • 44
  • 35
  • 21
  • 20
  • 20
  • 20
  • 19
  • 18
  • 17
  • 16
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Global Illumination for Dynamic Voxel Worlds using Surfels and Light Probes

Printzell, Dan January 2020 (has links)
Background. Getting realistic in 3D worlds has been a goal for the game industry since its creation. With the knowledge of how light works; computing a realistic looking image is possible. The problem is that it takes too much computational power for it to be to able render in real-time with an acceptable frame rate. In a paper Jendersie, Kuri and Grosch[8] and in a thesis by Kuri [9] they present a method of calculation light paths ahead-of-time, that will then be used at run-time to get realistic light. The problem with this is that only allows for static world. Objectives and Research questions. The objective of this thesis is to continue the work of the previously mentioned paper to allow the lighting system to be used for a dynamic voxel world. Where it will update the internal data structures when the world changes. Furthermore, this thesis will also answer how this lighting system is adapted for a voxel world, and additionally it will give suggestions of what can be done next. The questions this research will answer are: How can the creation algorithms of a Surfel and Light Cache GI system be optimized so it can be used in real-time while having interactive frame-rates? In what aspects does a voxel world, compared to a vertex world, influence the implementation of this GI system? Methods. The research questions will be answer by implementing the lighting system into a voxel engine and then optimizing it to allow it to be use at run-time with interactable frame-rates. Results. The result gather shows that a speedup of about 2.5 can be achieved by parallelizing the tasks into their own thread, and by allowing the lighting data to be a few frames behind. Conclusions. The experiment was successful and it shows that the lighting system can be optimized so it can be used at run-time. Additionally it explains how a voxel world influences the implementation of this lighting system. There is future work that can be done. For example, making a replication study where the algorithms are implemented into more engines to validate the results, exploring more optimization techniques, etc.
42

Dynamic Update of Sparse Voxel Octree Based on Morton Code

Yucong Pan (10710867) 06 May 2021 (has links)
<p>Real-time global illumination has been a very important topic and is widely used in game industry. Previous offline rendering requires a large amount of time to converge and reduce the noise generated in Monte Carlo method. Thus, it cannot be easily adapted in real-time rendering. Using voxels in the field of global illumination has become a popular approach. While a naïve voxel grid occupies huge memory in video card, a data structure called <i>sparse voxel octree</i> is often implemented in order to reduce memory cost of voxels and achieve efficient ray casting performance in an interactive frame rate. </p> <p>However, rendering of voxels can cause block effects due to the nature of voxel. One solution is to increase the resolution of voxel so that one voxel is smaller than a pixel on screen. But this is usually not feasible because higher resolution results in higher memory consumption. Thus, most of the global illumination methods of SVO (sparse voxel octree) only use it in visibility test and radiance storage, rather than render it directly. Previous research has tried to incorporate SVO in ray tracing, radiosity methods and voxel cone tracing, and all achieved real-time frame rates in complex scenes. However, most of them only focus on static scenes and does not consider dynamic updates of SVO and the influence of it on performance.</p> <p>In this thesis, we will discuss the tradeoff of multiple classic real-time global illumination methods and their implementations using SVO. We will also propose an efficient approach to dynamic update SVO in animated scenes. The deliverables will be implemented in CUDA 11.0 and OpenGL.</p>
43

Vytváření shaderů pro systém Mental Ray / Shaders for the Mental Ray Renderin System

Dohnal, Jan January 2008 (has links)
Goal of this diploma thesis is to get knowledge about history and evolution of computer graphic in area of realistic image synthesis, get knowledge about rendering system mental ray and about writing shader for it and write several shader. Create manual about writing  shaders for mental ray. Get knowledge about program Maya and create a tutorial hot to get the shader into it.
44

Realistické zobrazování pomocí radiozity / Realistic Rendering Using Radiosity

Janoušek, Jiří Unknown Date (has links)
This thesis deals with one of the global illumination algorithms - the radiosity algorithm. There are handled fundamentals of the radiosity algorithm including basic equations and relations. You can see review of possible solutions of this method in use and description of the implementation based on video card and OpenGL rendering. The thesis tries to explain main problems and attitudes to implementation of radiosity briefly, clearly and comprehensibly.
45

Performance Evaluation of (Spherical) Harmonics Virtual Lights for Real-time Global Illumination using Vulkan

Hultsborn, Simon January 2023 (has links)
Background. Global illumination is not trivial to compute in real-time computer graphics. One approximate solution is to distribute virtual light sources from a primary light, to then apply direct light calculations to said virtual lights. This can effectively estimate two-bounce illumination. To mitigate artifacts, virtual lights make use of a spherical shape and utilize spherical harmonics to allow for efficient light integration. These indirect light sources are referred to as "harmonics virtual lights" (HVLs). Objectives. The objectives of this thesis are to analyze the data structures, calculations and performance of an HVL implementation in different 3D scenes. Methods. HVLs are implemented using the Vulkan API. Experiments are then performed to evaluate and optimize execution times. Furthermore, different measures are taken to ensure correctness and minimize errors wherever possible. Results. The GPU pass responsible for gathering indirect light contributions from HVLs turned into a heavy bottleneck. A number of different optimization techniques were applied to said pass and analyzed. Seven techniques were found to have a positive effect on performance, each with varying degrees of impact on timings. No optimization compromised on input parameters, visual results or mathematical correctness. Additionally, three techniques were instead worsening performance of the implementation, despite having initial motivations for possible improvements. Conclusions. All optimization techniques with positive effects working in conjunction led to a total speedup of 46.9x in a specific use case of our implementation. There is room for further potential improvements, and a number of different techniques for future work are explained. The final source code for the implementation can be viewed in a public GitHub repository.
46

Point-Based Color Bleeding with Volumes

Gibson, Christopher J 01 June 2011 (has links) (PDF)
The interaction of light in our world is immensely complex, but with mod- ern computers and advanced rendering algorithms, we are beginning to reach the point where photo-realistic renders are truly difficult to separate from real photographs. Achieving realistic or believable global illumination in scenes with participating media is exponentially more expensive compared to our traditional polygonal methods. Light interacts with the particles of a volume, creating com- plex radiance patterns. In this thesis, we introduce an extension to the commonly used point-based color bleeding (PCB) technique, implementing volume scatter contributions. With the addition of this PCB algorithm extension, we are able to render fast, be- lievable in- and out-scattering while building on existing data structures and paradigms. The proposed method achieves results comparable to that of existing Monte Carlo integration methods, obtaining render speeds between 10 and 36 times faster while keeping memory overhead under 5%.
47

Tessellated Voxelization for Global Illumination Using Voxel Cone Tracing

Freed, Sam Thomas 01 June 2018 (has links) (PDF)
Modeling believable lighting is a crucial component of computer graphics applications, including games and modeling programs. Physically accurate lighting is complex and is not currently feasible to compute in real-time situations. Therefore, much research is focused on investigating efficient ways to approximate light behavior within these real-time constraints. In this thesis, we implement a general purpose algorithm for real-time applications to approximate indirect lighting. Based on voxel cone tracing, we use a filtered representation of a scene to efficiently sample ambient light at each point in the scene. We present an approach to scene voxelization using hardware tessellation and compare it with an approach utilizing hardware rasterization. We also investigate possible methods of warped voxelization. Our contributions include a complete and open-source implementation of voxel cone tracing along with both voxelization algorithms. We find similar performance and quality with both voxelization algorithms.
48

Real-time Cinematic Design Of Visual Aspects In Computer-generated Images

Obert, Juraj 01 January 2010 (has links)
Creation of visually-pleasing images has always been one of the main goals of computer graphics. Two important components are necessary to achieve this goal --- artists who design visual aspects of an image (such as materials or lighting) and sophisticated algorithms that render the image. Traditionally, rendering has been of greater interest to researchers, while the design part has always been deemed as secondary. This has led to many inefficiencies, as artists, in order to create a stunning image, are often forced to resort to the traditional, creativity-baring, pipelines consisting of repeated rendering and parameter tweaking. Our work shifts the attention away from the rendering problem and focuses on the design. We propose to combine non-physical editing with real-time feedback and provide artists with efficient ways of designing complex visual aspects such as global illumination or all-frequency shadows. We conform to existing pipelines by inserting our editing components into existing stages, hereby making editing of visual aspects an inherent part of the design process. Many of the examples showed in this work have been, until now, extremely hard to achieve. The non-physical aspect of our work enables artists to express themselves in more creative ways, not limited by the physical parameters of current renderers. Real-time feedback allows artists to immediately see the effects of applied modifications and compatibility with existing workflows enables easy integration of our algorithms into production pipelines.
49

Optimální strategie spojování světelných cest v dvojsměrových metodách pro výpočet globálního osvětlení / Optimal strategy for connecting light paths in bidirectional methods for global ilumination computation

Vorba, Jiří January 2011 (has links)
This work introduces a method for optimal combination of light paths generated from the camera and from the light sources in the Photon Mapping algorithm used for computing global illumination. Our method is based on Multiple Importance Sampling, a general approach, introduced by Veach, for adaptive path connection in Bidirectional Path-Tracing. Our goal is to examine this method in connection with the biased algorithm of Photon Mapping and to improve the ineffective heuristic used in the original version of this algorithm. This heuristic is usually problematic when applied to the scenes where highly glossy materials prevail.
50

High quality adaptive rendering of complex photometry virtual environments / Rendu adaptatif haute-qualité d'environnements virtuels à photométrie complexe

Dufay, Arthur 10 October 2017 (has links)
La génération d'images de synthèse pour la production cinématographique n'a cessé d'évoluer durant ces dernières décennies. Pour le non-expert, il semble que les effets spéciaux aient atteint un niveau de réalisme ne pouvant être dépassé. Cependant, les logiciels mis à la disposition des artistes ont encore du progrès à accomplir. En effet, encore trop de temps est passé à attendre le résultat de longs calculs, notamment lors de la prévisualisation d'effets spéciaux. La lenteur ou la mauvaise qualité des logiciels de prévisualisation pose un réel problème aux artistes. Cependant, l'évolution des cartes graphiques ces dernières années laisse espérer une potentielle amélioration des performances de ces outils, notamment par la mise en place d'algorithmes hybrides rasterisation/ lancer de rayons, tirant profit de la puissance de calcul de ces processeurs, et ce, grâce à leur architecture massivement parallèle. Cette thèse explore les différentes briques logicielles nécessaires à la mise en place d'un pipeline de rendu complexe sur carte graphique, permettant une meilleure prévisualisation des effets spéciaux. Différentes contributions ont été apportées à l'entreprise durant cette thèse. Tout d'abord, un pipeline de rendu hybride a été développé (cf. Chapitre 2). Par la suite, différentes méthodes d'implémentation de l'algorithme de Path Tracing ont été testées (cf. Chapitre 3), de façon à accroître les performances du pipeline de rendu sur GPU. Une structure d'accélération spatiale a été implémentée (cf. Chapitre 4), et une amélioration de l'algorithme de traversée de cette structure sur GPU a été proposée (cf. Section 4.3.2). Ensuite, une nouvelle méthode de décorrélation d'échantillons, dans le cadre de la génération de nombres aléatoires a été proposée (cf. Section 5.4) et a donné lieu à une publication [Dufay et al., 2016]. Pour finir, nous avons tenté de combiner l'algorithme de Path Tracing et les solutions Many Lights, toujours dans le but d'améliorer la prévisualisation de l'éclairage global. Cette thèse a aussi donné lieu à la soumission de trois mémoires d'invention et a permis le développement de deux outils logiciels présentés en Annexe A. / Image synthesis for movie production never stopped evolving over the last decades. It seems it has reached a level of realism that cannot be outperformed. However, the software tools available for visual effects (VFX) artists still need to progress. Indeed, too much time is still wasted waiting for results of long computations, especially when previewing VFX. The delays or poor quality of previsualization software poses a real problem for artists. However, the evolution of graphics processing units (GPUs) in recent years suggests a potential improvement of these tools. In particular, by implementing hybrid rasterization/ray tracing algorithms, taking advantage of the computing power of these processors and their massively parallel architecture. This thesis explores the different software bricks needed to set up a complex rendering pipeline on the GPU, that enables a better previsualization of VFX. Several contributions have been brought during this thesis. First, a hybrid rendering pipeline was developed (cf. Chapter 2). Subsequently, various implementation schemes of the Path Tracing algorithm have been tested (cf. Chapter 3), in order to increase the performance of the rendering pipeline on the GPU. A spatial acceleration structure has been implemented (cf. Chapter 4), and an improvement of the traversal algorithm of this structure on GPU has been proposed (cf. Section 4.3.2). Then, a new sample decorrelation method, in the context of random number generation was proposed (cf. Section 5.4) and resulted in a publication [Dufay et al., 2016]. Finally, we combined the Path Tracing algorithm with the Many Lights solution, always with the aim of improving the preview of global illumination. This thesis also led to the submission of three patents and allowed the development of two software tools presented in Appendix A.

Page generated in 0.1238 seconds