• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 18
  • 9
  • 8
  • 6
  • Tagged with
  • 90
  • 90
  • 47
  • 44
  • 35
  • 21
  • 20
  • 20
  • 20
  • 19
  • 18
  • 17
  • 16
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Illumination Globale par Monte Carlo Bayésien et cache d'éclairement généré à partir d'une carte de photons

Brouillat, Jonathan 24 November 2009 (has links) (PDF)
Le rendu réaliste est devenu essentiel dans l'industrie (cinéma, jeux vidéo, prototypage et design...). Cela nécessite de simuler l'interaction entre la lumière et les objets d'une scène 3D, un calcul connu sous le nom d'Illumination Globale et habituellement très coûteux en temps de calcul. Nous présentons une technique d'illumination globale combinant deux méthodes usuelles : les cartes de photons et le cache d'éclairement. Les cartes de photons ne dépendent pas de la vue, mais nécessitent une passe coûteuse appelée regroupement final. Le cache d'éclairement est plus rapide mais dépend de la vue : pour couvrir la scène entière, l'utilisateur doit placer manuellement plusieurs caméras dans la scène. Notre méthode exploite les avantages de chaque méthode, sans intervention de l'utilisateur. Elle génère un cache d'éclairement de qualité indépendant de la vue à partir d'une carte de photons, affichable interactivement. Nous étudions également une nouvelle approche pour réduire la variance inhérente aux méthodes de Monte Carlo. En règle générale, les emplacements des échantillons sont ignorés : deux échantillons proches se voient attribuer la même importance, bien qu'ayant probablement des valeurs similaires. L'approche bayésienne que nous proposons dans cette thèse utilise la valeur et la position des échantillons et se base sur un modèle probabiliste de l'intégrant pour inférer une valeur de l'intégrale. L'estimée bayésienne ne dépend que des échantillons, et non pas de la manière dont ils ont été choisis. Nous montrons que cette approche peut être appliquée au calcul du regroupement final et nous présentons des résultats démontrant l'intérêt du Monte Carlo Bayésien.
52

Global illumination techniques for the computation of hight quality images in general environments

Pérez Cazorla, Frederic 26 May 2003 (has links)
The objective of this thesis is the development of algorithms for the simulation of the light transport in general environments to render high quality still images. To this end, first we have analyzed the existing methods able to render participating media, more concretely those that account for multiple scattering within the media. Next, we have devised a couple of two pass methods for the computation of those images. For the first step we have proposed algorithms to cope with the scenes we want to deal with. The second step uses the coarse solution of the first step to obtain the final rendered image.The structure of the dissertation is briefly presented below.In the first chapter the motivation of the thesis and its objectives are discussed. It also summarizes the contributions of the thesis and its organization.In the second chapter the principles of global illumination for general environments are reviewed, with the most important equations---the rendering equation and the transport equation---whose solution constitutes the global illumination problem. In order to solve the global illumination problem, a certain number of multi-pass methods exist. Their objective is to be able to skip restrictions on the number of types of light paths that could be dealt with a single technique, or increase efficiency and/or accuracy. We have opted to follow this philosophy, and a pair of two pass methods have been developed for general environments.The third chapter includes the study of the methods that perform the single scattering approximation, and also the study of the ones that take into account multiple scattering.The fourth chapter is devoted to our first pass method, which computes a rough estimate of the global illumination. Knowing the benefits of hierarchical approaches, two concrete algorithms based on hierarchies have been extended to be more generic: Hierarchical Radiosity with Clustering and Hierarchical Monte Carlo Radiosity.Our second pass is considered in the next chapter. Using the coarse solution obtained by the first pass, our second pass computes a high quality solution from a given viewpoint. Radiances and source radiances are estimated using Monte Carlo processes in the context of path tracing acceleration and also for final gather. Probability density functions (PDFs) are created at ray intersection points. For such a task, we initially used constant basis functions for the directional domain. After realizing of their limitations we proposed the Link Probabilities (LPs), which are objects with adaptive PDFs in the links-space.In order to take advantage of the effort invested for the construction of the LPs, we have devised two closely related progressive sampling strategies. In the second pass, instead of sampling each pixel individually, only a subset of samples is progressively estimated across the image plane. Our algorithms are inspired by the work of Michael D. McCool on anisotropic diffusion using conductance maps.The final chapter presents the conclusions of the thesis. Also possible lines of further research are suggested. / El objetivo de esta tesis es el desarrollo de algoritmos para la simulación del transporte de la luz en los entornos genéricos para generar imágenes de la alta calidad. Con este fin, primero hemos analizado los métodos existentes capaces de visualizar medios participativos, más concretamente los que tienen en cuenta la dispersión múltiple en los medios. Después, hemos ideado un par de métodos de dos pasos para el cómputo de esas imágenes. Para el primer paso hemos propuesto algoritmos que hacen frente a las escenas que deseamos tratar. El segundo paso utiliza la solución aproximada del primer paso para obtener la imagen final. La estructura de la disertación se presenta brevemente en lo que sigue.En el primer capítulo se discuten la motivación de la tesis y sus objetivos. También se resumen las contribuciones de la tesis y su organización. En el segundo capítulo se repasan los principios de la iluminación global para los ambientes genéricos, con las ecuaciones-más importantes (la ecuación de rendering y la ecuación de transporte) cuya solución constituye el problema global de iluminación. Para solucionar el problema global de iluminación, cierto número de métodos de múltiples pasos existen. Su objetivo es poder eliminar restricciones en el número de tipos de caminos de luz que se podrían tratar con una sola técnica, o aumentar su eficacia y/o exactitud. Hemos optado seguir esta filosofía, desarrollando un par de métodos de dos pasos para entornos genéricos.El tercer capítulo incluye el estudio de los métodos que utilizan la aproximación de dispersión simple, y también el estudio de los que consideran la dispersión múltiple.El cuarto capítulo está dedicado a nuestro método de primer paso, que computa un cálculo aproximado de la iluminación global. Conociendo las ventajas de los métodos jerárquicos, dos algoritmos concretos basados en jerarquías se han ampliado para ser más genéricos: radiosidad jerárquica con clustering y radiosidad jerárquica usando Monte Carlo. Nuestro segundo paso se considera en el capítulo siguiente. Usando la solución aproximada obtenida por el primer paso, el segundo paso computa una solución de la alta calidad para un punto de vista dado. Se estiman las radiancias usando procesos de Monte Carlo en el contexto de la aceleración de trazadores de rayos y también para final gather. Las funciones de densidad de probabilidad (PDFs) se crean en los puntos de interacción de los rayos. Para tal tarea, utilizamos inicialmente funciones constantes como base para el dominio direccional. Después de comprender sus limitaciones, propusimos establecer probabilidades directamente sobre los enlaces (link probabilities, o LPs), usando objetos con PDFs adaptativos en el espacio de los enlaces.Para aprovechar el esfuerzo invertido en la construcción de los LPs, hemos ideado dos estrategias de muestreo progresivas. En el segundo paso, en vez de muestrear cada pixel individualmente, solamente se estima progresivamente un subconjunto de muestras a través del plano de imagen. Nuestros algoritmos han sido inspirados en el trabajo de Michael D. McCool en la difusión anisotrópica usando mapas de conductancia.El capítulo final presenta las conclusiones de la tesis, y también sugiere las líneas posibles de investigación futura.
53

[en] AN ARCHITECTURE FOR PHOTOREALISTIC IMAGE SYNTHESIS BASED ON MONTE CARLO TECHNIQUES / [pt] UMA ARQUITETURA PARA SÍNTESE DE IMAGENS FOTORREALISTAS BASEADA EM TÉCNICAS DE MONTE CARLO

OTAVIO DE PINHO FORIN BRAGA 05 July 2006 (has links)
[pt] Um dos principais objetivos da computação gráfica é a geração de imagens fotorrealistas, ou seja, imagens indistinguíveis das de uma capturada por uma câmera real ou, mais ambiciosamente, imagens que provocam a mesma sensação no sistema visual de um observador quando olhando diretamente para uma cena. Aplicações incluem o projeto de iluminação, a arquitetura, a realidade virtual e a indústria do cinema. Esse trabalho apresenta a arquitetura de um sistema capaz de resolver, por técnicas de Monte Carlo, a equação do transporte da luz, essencialmente uma aproximação das equações de Maxwell para ótica geométrica. Além de ser um renderer funcional, o sistema é implementado na forma de um framework em cima do qual pode-se facilmente experimentar idéas na área de síntese de imagens fotorrealistas, como, por exemplo, diferentes materiais, geometrias, estruturas de aceleração e estratégias de integração. / [en] One of the main goals in computer graphics is to create photorealistic images, that is, images indistinguishable from the ones captured by a real camera, or, more ambitiously, images that cause the same sensation on the visual system of an observer looking directly at a scene. Applications include illumination design, architecture, virtual reality and the movie industry. This work presents the architecture of a renderer that solves by Monte Carlo techniques the light transport equation, essentially a geometric optics approximation of Maxwell´s equations. The system is not only a functional renderer but also a framework where we can easily experiment new ideas in photorealistic image synthesis, such as new materials, geometries, acceleration structures and integration techniques.
54

Cálculo do Fator-de-Forma exato entre Áreas Diferencial e Finita Usando CSG / Computation the exact form factor between a finite area and a differential area using CSG

Barreto, Isaac Moreira January 2008 (has links)
BARRETO, Isaac Moreira. Cálculo do Fator-de-Forma exato entre Áreas Diferencial e Finita Usando CSG. 2008. 55 f. : Dissertação (mestrado) - Universidade Federal do Ceará, Centro de Ciências, Departamento de Computação, Fortaleza-CE, 2008. / Submitted by guaracy araujo (guaraa3355@gmail.com) on 2016-07-01T17:52:27Z No. of bitstreams: 1 2008_dis_imbarreto.pdf: 752627 bytes, checksum: 2c1a97d41785e527e97633cc6c7e9756 (MD5) / Approved for entry into archive by guaracy araujo (guaraa3355@gmail.com) on 2016-07-01T17:56:22Z (GMT) No. of bitstreams: 1 2008_dis_imbarreto.pdf: 752627 bytes, checksum: 2c1a97d41785e527e97633cc6c7e9756 (MD5) / Made available in DSpace on 2016-07-01T17:56:22Z (GMT). No. of bitstreams: 1 2008_dis_imbarreto.pdf: 752627 bytes, checksum: 2c1a97d41785e527e97633cc6c7e9756 (MD5) Previous issue date: 2008 / The Ray-Tracing and Radiosity methods are the main representatives of the method that solve the global illumination problem. In both mthods it is necessary to know the energy tranfer ratio between two areas. This ratio, called form factor, is one of the key concepts in Radiosity methods and is being more frequently used in Ray-Tracing methods with finite area light sources. There are many methods for the computation of the form factor, most of them are approximative due to a matter of performance, but, in some specific cases, the extra computational effort needed to compute the exact value of the form factor can improve the overall performance of the illumination method. In general, in these cases, the computational effort needed to obtain an acceptable approximation of the form factor outweighs the effort necessary to compute the exact value. Furthermore there are situation, for example, shadow boundary shading, in which a high precision is far more important than a performance gain. In this work we present a method to compute the exact form factor between a finite area and a differential area which uses CSG techniques to identify the ooccluded areas of the source. / Os métodos de Ray-Tracing e Radiosidade são os principais representantes dos métodos existentes para resolver o problema de iluminação global. Em ambos os métodos se faz necessário saber a taxa de transferência de energia luminosa entre duas áreas. Essa taxa de transferência, chamada de fator-de-forma, é um dos pontos principais no método de Radiosidade e vem sendo usado cada vez com mais frequência em métodos de Ray-Tracing com fontes luminosas de área finita. Existem vários métodos para o cálculo do fator-de-forma, a maioria deles são aproximativos por uma questão de desempenho. Porém, em casos específicos, o trabalho extra para calcular o valor exato do fator-de-forma pode melhorar o desempenho global do método. Em geral, nesses casos, o esforço necessário para se obter uma aproximação aceitável do valor do fator-de-forma supera o esforço necessário para calcular o valor exato em si. Além disso, existem situações, tais como a renderização nas áreas de fronteiras de sombras, em que uma alta precisão é mais importante do que um ganho no desempenho. Nessas situações, é desejável que o método tenha ao seu dispor uma maneira de calcular o valor exato do fator-de-forma. Neste trabalho é apresentado um método para calcular o fator-de-forma exato entre uma área finita e uma área diferencial que utiliza de técnicas CSG para identificar as áreas ocluídas do polígono emissor.
55

Representação e calculo eficiente da iluminação global na sintese de imagem / Efficient computation of global illumination for image synthesis

Pereira, Danillo Roberto, 1984- 13 August 2018 (has links)
Orientadores: Anamaria Gomide, Jorge Stolfi / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-13T10:58:35Z (GMT). No. of bitstreams: 1 Pereira_DanilloRoberto_M.pdf: 891270 bytes, checksum: 71a9debc6a10f8de7083dd3e33c649a6 (MD5) Previous issue date: 2009 / Resumo: A geração de imagens fotorrealisticas e um desafio importante em computação gráfica. Um ingrediente critico para a obtenção do realismo esta o modelo de iluminação. Em 1986, Jim Kajiya apresentou uma equação integral que define o fluxo de luz (radiosidade) num ambiente de maneira precisa; contudo, ate recentemente, os métodos conhecidos para a resolução dessa equação tinham custo computacional e complexidade de implementação elevados. Em 2008, Jaako Lehtinen desenvolveu uma técnica relativamente simples e eficiente para o calculo da iluminação global em cenas virtuais, usando elementos finitos definidos por pontos de amostragem. Neste projeto de Mestrado, implementamos esse método, e comparamos o resultado usando três tipos diferentes de bases: uma base radial, uma base radial normalizada e uma base de Shepard. Alem da comparação visual, calculamos a radiosidade "exata" para uma cena simples e comparamos quantitativamente esse resultado com os resultados do método de Lehtinen com cada uma das três bases. / Abstract: The generation of realistic images is a major challenge in computer graphics. A critical ingredient for realistic rendering is the lighting model. In 1986, Jim Kajiya presented an integral equation that precisely defines the light flow (radiosity) in a virtual environment; however, until recently, the known methods for solving that equation had high computational cost and implementation complexity. In 2008, Jaako Lehtinen developed a relatively simple and efficient technique for the computation of global illumination in virtual scenes, using finite elements defined by sampling points. In this Masters project, we implemented that method, and compared the results using three different types of bases: a radial basis, a normalized radial basis, and a Shepard basis. Besides visual comparison, we computed the "exact" radiosity for a simple scene and compared quantitatively that result with the results obtained by Lehtinen's method with each of the three bases. / Mestrado / Computação Grafica / Mestre em Ciência da Computação
56

CÃlculo do Fator-de-Forma exato entre Ãreas Diferencial e Finita Usando CSG / Computation the exact form factor between a finite area and a differential area using CSG

Isaac Moreira Barreto 10 March 2008 (has links)
Universidade Federal do Cearà / Os mÃtodos de Ray-Tracing e Radiosidade sÃo os principais representantes dos mÃtodos existentes para resolver o problema de iluminaÃÃo global. Em ambos os mÃtodos se faz necessÃrio saber a taxa de transferÃncia de energia luminosa entre duas Ãreas. Essa taxa de transferÃncia, chamada de fator-de-forma, à um dos pontos principais no mÃtodo de Radiosidade e vem sendo usado cada vez com mais frequÃncia em mÃtodos de Ray-Tracing com fontes luminosas de Ãrea finita. Existem vÃrios mÃtodos para o cÃlculo do fator-de-forma, a maioria deles sÃo aproximativos por uma questÃo de desempenho. PorÃm, em casos especÃficos, o trabalho extra para calcular o valor exato do fator-de-forma pode melhorar o desempenho global do mÃtodo. Em geral, nesses casos, o esforÃo necessÃrio para se obter uma aproximaÃÃo aceitÃvel do valor do fator-de-forma supera o esforÃo necessÃrio para calcular o valor exato em si. AlÃm disso, existem situaÃÃes, tais como a renderizaÃÃo nas Ãreas de fronteiras de sombras, em que uma alta precisÃo à mais importante do que um ganho no desempenho. Nessas situaÃÃes, à desejÃvel que o mÃtodo tenha ao seu dispor uma maneira de calcular o valor exato do fator-de-forma. Neste trabalho à apresentado um mÃtodo para calcular o fator-de-forma exato entre uma Ãrea finita e uma Ãrea diferencial que utiliza de tÃcnicas CSG para identificar as Ãreas ocluÃdas do polÃgono emissor. / The Ray-Tracing and Radiosity methods are the main representatives of the method that solve the global illumination problem. In both mthods it is necessary to know the energy tranfer ratio between two areas. This ratio, called form factor, is one of the key concepts in Radiosity methods and is being more frequently used in Ray-Tracing methods with finite area light sources. There are many methods for the computation of the form factor, most of them are approximative due to a matter of performance, but, in some specific cases, the extra computational effort needed to compute the exact value of the form factor can improve the overall performance of the illumination method. In general, in these cases, the computational effort needed to obtain an acceptable approximation of the form factor outweighs the effort necessary to compute the exact value. Furthermore there are situation, for example, shadow boundary shading, in which a high precision is far more important than a performance gain. In this work we present a method to compute the exact form factor between a finite area and a differential area which uses CSG techniques to identify the ooccluded areas of the source.
57

[en] VISUALIZATION OF SEISMIC VOLUMETRIC DATE USING A DIRECTIONAL OCCLUSION SHADING MODEL / [pt] VISUALIZAÇÃO VOLUMÉTRICA DE DADOS SÍSMICOS UTILIZANDO UM MODELO DE ILUMINAÇÃO POR OCLUSÃO DIRECIONAL

MARCELO MEDEIROS ARRUDA 26 March 2013 (has links)
[pt] A interpretação de dados sísmicos é de fundamental importância para a industria de óleo e gás. Uma vez que esses tipos de dados possuem um caráter volumétrico, não é tão simples se identificar e selecionar atributos presentes em sua estrutura 3D. Além disso, a grande presença de ruídos e concavidades acentuadas nesse tipo de dado aumenta a complexidade de sua manipulação e visualização. Devido a essas características, a geometria do dado é muito complexa, sendo necessários modelos de iluminação mais realísticos para realizar a iluminação do volume sísmico. Este trabalho consiste em realizar a visualização volumétrica de dados sísmicos baseada no algoritmo de traçado de raios, utilizando um modelo de iluminação por oclusão direcional, calculando a contribuição de luz ambiente que chega a cada elemento do volume. Desta forma, conseguimos realçar a geometria do dado sísmico, sobretudo onde as concavidades e falhas são mais acentuadas. O algoritmo proposto foi inteiramente implementado em placa gráfica, permitindo manipulação a taxas interativas, sem a necessidade de pré-processamento. / [en] The interpretation of seismic volumetric data has a major importance for the oil and gas industry. Since these data types have a volumetric character mode, identify and select attributes present in this struct become a difficult task. Furthemore, the high-frequecy noise and depth information typically found in this type of data, increasesthe complexity of their manipulation and visualization. Due to these characteristics, the geometry of 3D sismic data is very complexy and is necessary more realistic light model to perfom the illumnination of the seismic volume. This work consists of performing a volumetric visualization of seismic data based on ray tracing algorithm, using an illumination model by directional occlusion, computing the ambiente light attenuated by the elements in the light trajetory for all elements in the volume. Thus, we emphasize the geometry of the seismic data, especially the depth cues and spatial relationship. The proposed algorithm was fully implemented on graphics card, allowing at interactive rates, without any pre-processing.
58

Analyse spatiale et spectrale des motifs d'échantillonnage pour l'intégration Monte Carlo / Spatial and spectral analysis of sampling patterns for Monte Carlo integration

Pilleboue, Adrien 19 November 2015 (has links)
L’échantillonnage est une étape clé dans le rendu graphique. Il permet d’intégrer la lumière arrivant en un point de la scène pour en calculer sa couleur. Généralement, la méthode utilisée est l’intégration Monte Carlo qui approxime cette intégrale en choisissant un nombre fini d’échantillons. La réduction du biais et de la variance de l’intégration Monte Carlo est devenue une des grandes problématiques en rendu réaliste. Les techniques trouvées consistent à placer les points d’échantillonnage avec intelligence de façon à rendre la distribution la plus uniforme possible tout en évitant les régularités. Les années 80 ont été de ce point de vue un tournant dans ce domaine, avec l’apparition de nouvelles méthodes stochastiques. Ces méthodes ont, grâce à une meilleure compréhension des liens entre intégration Monte Carlo et échantillonnage, permis de réduire le bruit et la variance des images générées, et donc d’améliorer leur qualité. En parallèle, la complexité des méthodes d’échantillonnage s’est considérablement améliorée, permettant d’obtenir des méthodes à la fois rapides et efficaces en termes de qualité. Cependant, ces avancées ont jusqu’à là été faites par tâtonnement et se sont axées sur deux points majeurs : l’amélioration de l’uniformité du motif d’échantillonnage et la suppression des régularités. Bien que des théories permettant de borner l’erreur d’intégration existent, elles sont souvent limitées, voire inapplicables dans le domaine de l’informatique graphique. Cette thèse propose de rassembler les outils d’analyse des motifs d’échantillonnages et de les mettre en relation. Ces outils peuvent caractériser des propriétés spatiales, comme la distribution des distances entre points, ou bien spectrales à l’aide de la transformée de Fourier. Nous avons ensuite utilisé ces outils afin de donner une expression simple de la variance et du biais dans l’intégration Monte Carlo, en utilisant des prérequis compatibles avec le rendu d’image. Finalement, nous présentons une boite à outils théorique permettant de déterminer la vitesse de convergence d’une méthode d’échantillonnage à partir de son profil spectral. Cette boite à outils est notamment utilisée afin de classifier les méthodes d’échantillonnage existantes, mais aussi pour donner des indications sur les principes fondamentaux nécessaires à la conception de nouveaux algorithmes d’échantillonnage / Sampling is a key step in rendering pipeline. It allows the integration of light arriving to a point of the scene in order to calculate its color. Monte Carlo integration is generally the most used method to approximate that integral by choosing a finite number of samples. Reducing the bias and the variance of Monte Carlo integration has become one of the most important issues in realistic rendering. The solutions found are based on smartly positioning the samples points in a way that maximizes the uniformity of the distribution while avoiding the regularities. From this point of view, the 80s were a turning point in this domain, as new stochastic methods appeared. With a better comprehension of links between Monte Carlo integration and sampling, these methods allow the reduction of noise and of variance in rendered images. In parallel, the complexity of sampling methods has considerably enhanced, enabling to have fast as well as good quality methods. However, these improvements have been done by trial and error focusing on two major points : the improvement of sampling pattern uniformity, and the suppression of regularities. Even though there exists some theories allowing to bound the error of the integration, they are usually limited, and even inapplicable in computer graphics. This thesis proposes to gather the analysis tools of sampling patterns and to connect them together. These tools can characterize spatial properties such as the distribution of distances between points, as well as spectral properties via Fourier transformation. Secondly, we have used these tools in order to give a simple expression of the bias and the variance for Monte Carlo integration ; this is done by using prerequisites compatible with image rendering. Finally, we present a theoretical toolbox allowing to determine the convergence speed of a sampling method from its spectral profile. This toolbox is used specifically to give indications about the design principles necessary for new sampling algorithms
59

Výpočet osvětlení ve scéně v reálném čase / Real-Time Illumination of a Scene

Martanovič, Lukáš January 2013 (has links)
This thesis is focused on describing methods of computation of global illumination of 3D graphics scenes in real-time. First chapter contains brief introduction to the issue of global illumination (GI) computation, as well as quick summarisation of principles of most commonly used GI computation approaches. A method of visibility computing for indirect illumination, taking advantage of Imperfect Shadow Mapping, is introduced next. After closer examination of this method and prerequisite algorithms follows a description of its practical implementation, as well as of the structure of simple demonstrative application. Next chapter then contains testing and brief examination and evaluation of resulting program's behaviour. Finally, a possible method extension by means of virtual point light clustering is proposed.
60

Voxel Cone Tracing / Voxel Cone Tracing

Pracuch, Michal January 2016 (has links)
This thesis deals with the global illumination in the scene by using Voxel Cone Tracing method. It is based on the voxelization of a triangle mesh scene. The voxels can be stored to a full regular 3D grid (texture) or to the hierarchic Sparse Voxel Octree for saving of the memory space. This voxel representation is further used for computations of the global indirect illumination in real time within normal triangle mesh scenes for more realistic final image. Values from the voxels are obtained by tracing cones from the pixels which we want to get illumination for.

Page generated in 0.1301 seconds