• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 7
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 28
  • 28
  • 10
  • 10
  • 8
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Etude de la diversité neuronale au sein du Globus Pallidus : analyse neurochimique, électrophysiologique et manipulation optogénétique d’un sous-type neuronal chez le rongeur / Study of neuronal diversity in the Globus Pallidus : neurochemical, electrophysiological analysis and optogenetic manipulation of neuronal subtype in rodents

Abdi, Azzedine 28 November 2013 (has links)
Le réseau des ganglions de la base (GB) est un ensemble de structures sous corticales, dont la principale fonction est le contrôle du mouvement volontaire. Le Globus Pallidus (GP), équivalent du GPe chez le primate, est un noyau constitué exclusivement de neurones GABAergiques, qui joue un rôle clé dans le fonctionnement des GB de par ses projections inhibitrices diffuses sur l’ensemble des structures de ce macrocircuit. Bien qu’une diversité neuronale au sein du GP ait été suggérée sur les bases de l’origine embryonnaire, de l’expression de protéines spécifiques ou encore de l’activité électrique des neurones, ces différents paramètres n’ont pas été corrélés de manière claire. Notre premier objectif a donc été de corréler les propriétés membranaires de neurones du GP enregistrés en patch-clamp sur des tranches de cerveau de rat avec l’expression spécifique de deux marqueurs neuronaux : une protéine liant le calcium, la parvalbumine (PV) ou un facteur de transcription, Forkhead Box 2 (FoxP2). Nous avons observé des différences électrophysiologiques significatives entre les neurones PV-positifs et FoxP2-positifs. Ce résultat nous a amené à formuler l’hypothèse qu’ayant des propriétés distinctes, les neurones PV-positifs et FoxP2-positifs pouvaient être connectés de manière différente au sein du réseau des ganglions de la base. Nous avons donc réalisé des expériences de traçage neuronal in vivo afin d’identifier les structures cibles de chaque sous-population. Nous montrons que les neurones PV-positifs projettent sur les structures de sortie des ganglions de la base tandis que les neurones FoxP2-positifs projettent uniquement sur le striatum. Enfin, le GP étant majoritairement composé de neurones PV-positifs, nous avons décidé de manipuler spécifiquement l’activité électrique de cette population in vitro et in vivo grâce à l’optogénétique. Nous présentons des résultats montrant que la modulation de l’activité électrique des neurones PV-positifs modifie le comportement moteur chez l’animal vigile. Nos résultats d’immunohistochimie et d’électrophysiologie in vitro démontrent pour la première fois l’existence d’une diversité neuronale au sein du GP. Nos expériences constituent la première étude du rôle des neurones PV-positifs dans le contrôle du mouvement volontaire. / Globus Pallidus (GP in Rodents; GPe in Primates) which belongs to the indirect pathway of basal ganglia is often, if not always, considered as an homogeneous entity which simply relays striatal information through the subthalamic nucleus, downstream to the output of basal ganglia, the substantia nigra pars reticulata. Prototypical GP neurons are often described as fast-spiking GABAergic cells which express parvalbumin (PV) as a neurochemical marker. However, cellular heterogeneity in GP has been suggested by anatomical, neurochemical, fate mapping analysis and electrophysiological activity in vivo but a clear demonstration of the existence of distinct cell types in GP, which requires by definition correlation of electrophysiological activity with neurochemistry and structure, is still missing. The objective of my PhD was i) to determine if the expression of specific neuronal markers in GP neurons is correlated with specific electrophysiological properties, ii) to understand the function of identified cell types in motor control, in order to prove that neuronal diversity exists and matters in GP. We show that electrical activity and repertoire of ionic channels differ in PV-positive and FoxP2-positive neurons. We demonstrate that PV-positive neurons do project on downstream structures whereas FoxP2-positive neurons exclusively target striatum. We report that manipulating PV-positive neurons using optogenetics induce changes in motor behavior. Thus, our results contribute to highlight the function of GP in motor control.
12

Rôle du striatum, du noyau subthalamique et du globus pallidus externe dans les processus motivationnels : étude électrophysiologique de l'influence de la force et de la récompense dans une tâche visuo-motrice chez le singe / Role of the striatum, the subthalamic nuclus and the external part of the globus pallidus in motivational processes : electrophysiological study of the influence of the force and the reward in a visuo-motor task in monkeys.

Nougaret, Simon 13 February 2015 (has links)
Les ganglions de la base forment un ensemble de structures sous-corticales connues pour leur implication dans les processus sensori-moteurs, cognitifs et motivationnels. L’objectif de ce travail était d’approfondir le rôle des neurones du noyau subthalamique (NST), des neurones de projections et interneurones cholinergiques du striatum et des neurones du globus pallidus externe (GPe) dans la mise en place et l’exécution d’un comportement dans différents contextes motivationnels. Nous nous sommes intéressés à l’influence de l’effort et de la récompense sur l’activité de ces neurones grâce à une approche comportementale associée à des enregistrements extracellulaires unitaires chez le singe éveillé. L’influence de ces facteurs a été appréhendée dans une tâche visuo-motrice dans laquelle différents niveaux d’effort et de récompense étaient imposés à l’animal. Nos résultats comportementaux ont montré une prise en compte de la valeur des stimuli par les animaux. Les résultats électrophysiologiques obtenus montrent une implication de chacune des populations étudiées dans le traitement des informations relatives à l’effort et à la récompense. Ils suggèrent un rôle des neurones du NST, du striatum et du GPe respectivement dans la mise en place, l’exécution et l’évaluation de l’action sur la base de la valeur subjective de la récompense. Nos résultats apportent des informations nouvelles sur les substrats neurophysiologiques qui sous-tendent les processus motivationnels dans la circuiterie des ganglions de la base. / The basal ganglia form a set of subcortical structures known to be involved in sensorimotor, cognitive and motivational processes. The aim of this work was to study the role of the subthalamic nucleus (STN) neurons, the cholinergic interneurons and the projection neurons of the striatum and the neurons of the external part of the globus pallidus (GPe) in the establishment and the execution of a behavior under different motivational contexts. We examined the influence of effort and reward on the activity of these neurons with a behavioral approach combined with extracellular recordings in awake monkeys. The influence of these factors has been investigated in a visuo-motor task in which different levels of effort and reward were imposed on the animal. Our behavioral results showed a consideration of the value of the visual stimuli by the animals. Electrophysiological results showed an implication of each of the neuronal populations studied in the encoding of force and reward related information. These data suggest a role of STN, striatum and GPe in the establishment, the execution and the update of the benefit of the action based on subjective reward value. Our results bring out new features on the neurophysiological substrates underlying motivational processes in basal ganglia circuitry.
13

Contribution du Globus Pallidus et du noyau Entopédonculaire dans le contrôle de la locomotion et du mouvement d’atteinte chez le chat

Mullié, Yannick 02 1900 (has links)
Cette thèse aborde la contribution des noyaux gris centraux (NGCs) au contrôle de trois activités motrices importantes que sont la locomotion non obstruée, le contrôle visuoguidé des modifications de la locomotion et celui des mouvements d’atteinte. Ce travail s’inscrit dans le cadre des études antérieures entreprises par notre laboratoire. Celles-ci ont détaillé l’activité de plusieurs aires corticales que nous supposons impliquées dans la planification des modifications locomotrices. De nombreuses cellules enregistrées dans ces études montrent des décharges similaires, quel que soit le membre qui franchit l’obstacle en premier (limb-independent). Ce signal pouvant être transformé en signal dépendant du membre, ou « limb-dependent », pour déterminer, entre autres, quel membre franchira l’obstacle en premier. Nous proposons que les NGCs soient impliqués dans cette transformation et qu’ils puissent contribuer à la fois à la sélection du membre qui enjambera l’obstacle en premier, et à l’initiation des modifications nécessaires à l’enjambement. Pour tester cette hypothèse, nous avons enregistré l’activité pallidale (i.e. noyau entopédonculaire et globus pallidus) de cinq chats lors de la marche sur tapis roulant et lors de l’enjambement des obstacles attachés à celui-ci. Nos résultats ont tout d’abord montré qu’une large population de cellules modulait son activité en accord avec le rythme locomoteur. Un grand nombre d’entre elles présentaient des modifications de leur activité de décharge avant l’initiation de l’enjambement, mais uniquement par rapport au membre controlatéral au site de l’enregistrement. Nous suggérons que ceci serait compatible avec une participation à la sélection du membre. De plus, d’autres cellules déchargeaient avec de brèves bouffées d’activité avant et pendant le franchissement et pourraient fournir les caractéristiques temporelles de celui-ci. La majorité des cellules ont montré des changements reliés à la phase de balancement du membre controlatéral, cependant quelques cellules déchargeaient en rapport avec l’activité de plusieurs membres menant à la suggestion de leur possible contribution à la régulation de la séquence d’activité dans les quatre membres. Pour déterminer si les mêmes cellules contribuaient au mouvement d’atteinte, leur activité a également été enregistrée, après le transfert du chat, sur un appareillage adjacent. La plupart des cellules déchargeaient lors de l’atteinte et pendant la locomotion. Dans certains cas, les modifications étaient très similaires, avec des cellules qui déchargeaient pendant la phase de balancement à la locomotion et pendant la phase de transport pendant l’atteinte. L’activité des autres était plus contrastée, suggérant un contrôle dépendant du contexte et possiblement l’existence de circuits séparés, dans le contrôle de différents mouvements. La tâche d’atteinte nous a aussi permis de corréler les décharges pallidales, avec les ajustements posturaux anticipateurs (APAs) qui précèdent le mouvement, ou avec le mouvement lui-même. Seules quelques cellules ont montré une meilleure corrélation avec les APAs, suggérant un rôle préférentiel du pallidum dans le mouvement spécifiquement, plutôt que dans les activités posturales qui le précèdent. En conclusion, nos résultats suggèrent que l’activité pallidale est étroitement corrélée à différents aspects des activités motrices et suggèrent que le pallidum est bien placé pour, en fonction du contexte, intégrer et transformer le signal cortical et participer au contrôle précis du déplacement et du positionnement du membre. Notons que puisque les plus importants changements d’activité prenaient la forme d’augmentations plutôt que des diminutions, nous discutons la possibilité que ces augmentations puissent sculpter l’activité thalamo-corticale plutôt que relâcher le thalamus de son inhibition. / This thesis addresses the issue of how the basal ganglia contribute to the control of three important motor activities: i) the control of non-obstructed locomotion, ii) the control of visually-guided gait modifications and iii) the control of visually-guided reaching movements. A major impetus for this work comes from previous studies from this laboratory that have detailed the activity of several cortical areas that we postulate are involved in the planning of gait modification. Many of the cells recorded in these studies show similar discharges regardless of which limb is the first to step over the obstacle (limb-independent). This signal therefore has to be transformed into a limb-dependent signal to determine, amongst other issues, which limb will be the first to step over the obstacle. We propose that the basal ganglia are involved in this transformation and that it might make a contribution both in selecting which limb will be the first to step over the obstacle as well as determining temporal aspects of the resulting step. To test this hypothesis, we recorded activity from the pallidum (i.e. globus pallidus and entopedoncular nucleus) of five cats trained to walk on a treadmill and to step over a moving obstacle attached to that treadmill. We showed that a large proportion of pallidal neurons modulated their discharge according to the locomotor rhythm. Many of these neurons discharged before the onset of the step over the obstacle, but only for the contralateral limb to the recording site, compatible with a bias toward selecting that limb. In addition, other cells discharged with brief bursts of activity before and during the step and might contribute to providing temporal information about the upcoming step. The majority of cells showed changes related to the swing phase of the contralateral limb but some cells discharged with respect to the activity in several limbs leading us to suggest a possible contribution to the regulation of the sequence of activity in the four limbs. To determine whether the same cells contributed to discrete reaches, neuronal activity was recorded from the same cells after the transfer of the cat from the treadmill to an adjacent apparatus. Most cells discharged during both behaviours and in some cases the discharges during gait modification and reaching were very similar. In particular, cells discharging during the swing phase of locomotion also discharged during the transport phase of the reach. In other cases, the activity was more disparate, suggesting a context-dependent control over the activity and perhaps the existence of separate circuits for the control of different movements. The reaching task allowed us to correlate the discharge with preparatory postural adjustments that precede movements. Only a few cells showed a better correlation with APAs in comparison with the movement, suggesting a preferential role of the pallidum in focal movements rather than in the preceding postural activities. In conclusion, our results suggest that the activity in the pallidum is tightly correlated with different aspects of motor activity, suggesting that the pallidum is well placed to integrate and transform cortical signals and participate in the precise control of limb displacement. It was noteworthy that the strongest and most frequent changes in activity were increases rather than decreases. We discuss the possibility that these increases in activity might sculpt thalamocortical activity rather than releasing the thalamus from inhibition.
14

Contribution au développement de nouveaux vecteurs inductibles par la tétracycline et basés sur le parvovirus adéno-associé (AAV)

Chtarto, Abdelwahed 27 October 2005 (has links)
Le parvovirus adéno-associé (AAV) possède un génome à ADN linéaire simple brin de 4,7kb encadré par deux séquences palindromiques inversées et identiques de 145 nucléotides appelées ITRs, requises en cis pour la réplication et l’encapsidation de l’ADN viral. Dans un AAV recombinant (rAAV), la totalité de la partie codante du génome viral est remplacée par une cassette d’expression et seuls les ITRs sont conservés. Le rAAV constitue un outil de choix pour le transfert de gènes dans diverses applications thérapeutiques. Cependant, dans bon nombre d’entre elles, il est nécessaire de pouvoir moduler l’expression du transgène quantitativement et au cours du temps. Plusieurs systèmes de régulation ont été décrits dont le système d’activation (Tet-On) de l’expression du transgène par la tétracycline et ses analogues (ex : la doxycycline). Le transfert et l’activation de l’expression du transgène par la doxycycline (Dox) nécessite deux vecteurs d’expression, un premier vecteur dans lequel le transactivateur (rtTA) est exprimé à partir d’un promoteur constitutif et un second qui porte le gène d’intérêt sous le contrôle du promoteur tétracycline (Ptet). Le Ptet est constitué du promoteur minimal du cytomégalovirus humain (PhCMVmini) placé en aval d’une répétition de séquences dites "opérateurs" (tetO). En présence de la Dox, le rtTA change de conformation, se lie au tetO et active la transcription du gène d’intérêt à partir du PhCMVmini. Pour le transfert de gène in vivo, il est cependant préférable de disposer d’un vecteur portant les deux cassettes d’expression au sein d’une seule construction (rAAV unique). Toutefois, les ITRs d’AAV d’une part et les séquences "enhancers" du promoteur utilisé pour exprimer le rtTA d’autre part, interfèrent avec le Ptet donnant lieu à une expression du gène d’intérêt à l’état non induit et par conséquent à un faible facteur d’induction. Nous décrivons dans ce travail un vecteur rAAV unique dont l’expression du transgène est activée par la tétracycline après transfert dans le cerveau de rat. En effet, nous avons développé un vecteur autorégulable dans lequel les deux cassettes d’expression sont placées en orientations opposées et la transcription du transgène et du rtTA est initiée à partir d’un promoteur tétracycline bidirectionnel (Ptet-bidi) et terminée par les signaux de polyadénylation bidirectionnels de SV40. Placées à côté de chaque ITR, ces dernières séquences pourraient également servir à arrêter la trancription à partir des ITRs d’AAV en absence de l’inducteur. Les performances de notre vecteur portant le gène rapporteur egfp (rAAV-ptetbidi-EGFP) ont été établies dans diverses lignées cellulaires immortalisées, dans des cultures primaires de cellules de Schwann ainsi que dans le cerveau du rat et des facteurs d’induction allant de 20 à 100 fois ont été observés. Nous avons également évalué la capacité de la minocycline (Mino), un antibiotique de la famille des tétracyclines utilisé pour ses propriétés anti-inflammatoires dans le cerveau, à induire l’expression du transgène à partir du Ptet dans une lignée de cellules U87-MG exprimant de façon stable le plasmide ptetbidi-EGFP. Quoique l’induction maximale de l’expression du transgène par la Mino nécessite des doses plus élevées et un temps plus long de traitement comparée à la Dox, elle apparaît moins toxique à des doses effectrices. Nous avons également évalué la réversibilité du système. Les résultats montrent une extinction plus rapide dans des cellules induites par la Mino comparée à celle obtenue dans des cellules induites par la Dox. Cependant, la cinétique d’induction du rAAV-ptetbidi-EGFP était lente et le niveau basal d’expression était encore élevé. De plus, à l’état induit, le nombre de cellules transduites par ce vecteur in vitro et in vivo reste inférieur à celui obtenu avec un vecteur équivalent portant le transgène sous le contrôle d’un promoteur constitutif. Nous avons réussi à améliorer l’inductibilité de notre vecteur portant le gène rapporteur egfp ou le gène thérapeutique hgdnf codant pour un facteur neurotrophique ayant un effet neuroprotecteur sur les neurones dopaminergiques mais également des effets non désirés : i) en plaçant, en aval du rtTA, le WPRE, une séquence de régulation post-transcriptionnelle d’origine virale permettant l’accumulation du transactivateur à concentration plus élevée dans les cellules transduites. Il en résulte un démarrage plus rapide et un niveau plus élevé de l’expression du transgène ainsi qu’une augmentation du nombre de cellules transduites dans le striatum de rat en réponse à la Dox; ii) en remplaçant le rtTA par le rtTA2SM2 moins toxique, plus stable et ayant une meilleure affinité de liaison au tetO. L’utilisation du rtTA2SM2 permet une réduction du niveau basal d’expression du transgène et son induction à plus faible dose d’inducteur. La version améliorée de notre vecteur a été ensuite encapsidée dans le sérotype 1 d’AAV, qui, injecté dans le striatum de rat, permet d’améliorer le volume de transduction et d’augmenter le nombre de cellules "GFP-positives" transduites comparé au sérotype 2 couramment utilisé. Un facteur d’induction de l’ordre de 10 fois a été également obtenu au moyen d’un rAAV1-ptet-bidi-hGDNF avec une quantité de GDNF exprimée à l’état induit dans la gamme des concentrations neuroprotectrices (100 pg/mg de tissu).
15

ELECTROPHYSIOLOGY OF BASAL GANGLIA (BG) CIRCUITRY AND DYSTONIA AS A MODEL OF MOTOR CONTROL DYSFUNCTION

Kumbhare, Deepak 01 January 2016 (has links)
The basal ganglia (BG) is a complex set of heavily interconnected nuclei located in the central part of the brain that receives inputs from the several areas of the cortex and projects via the thalamus back to the prefrontal and motor cortical areas. Despite playing a significant part in multiple brain functions, the physiology of the BG and associated disorders like dystonia remain poorly understood. Dystonia is a devastating condition characterized by ineffective, twisting movements, prolonged co-contractions and contorted postures. Evidences suggest that it occurs due to abnormal discharge patterning in BG-thalamocortocal (BGTC) circuitry. The central purpose of this study was to understand the electrophysiology of BGTC circuitry and its role in motor control and dystonia. Toward this goal, an advanced multi-target multi-unit recording and analysis system was utilized, which allows simultaneous collection and analysis of multiple neuronal units from multiple brain nuclei. Over the cause of this work, neuronal data from the globus pallidus (GP), subthalamic nucleus (STN), entopenduncular nucleus (EP), pallidal receiving thalamus (VL) and motor cortex (MC) was collected from normal, lesioned and dystonic rats under awake, head restrained conditions. The results have shown that the neuronal population in BG nuclei (GP, STN and EP) were characterized by a dichotomy of firing patterns in normal rats which remains preserved in dystonic rats. Unlike normals, neurons in dystonic rat exhibit reduced mean firing rate, increased irregularity and burstiness at resting state. The chaotic changes that occurs in BG leads to inadequate hyperpolarization levels within the VL thalamic neurons resulting in a shift from the normal bursting mode to an abnormal tonic firing pattern. During movement, the dystonic EP generates abnormally synchronized and elongated burst duration which further corrupts the VL motor signals. It was finally concluded that the loss of specificity and temporal misalignment between motor neurons leads to corrupted signaling to the muscles resulting in dystonic behavior. Furthermore, this study reveals the importance of EP output in controlling firing modes occurring in the VL thalamus.
16

Overlapping Projections of Neighboring Direct and Indirect Pathway Neostriatal Neurons to Globus Pallidus External Segment / 線条体の隣接した直接路・間接路ニューロンからの淡蒼球外節投射は重複する

Okamoto, Shinichiro 24 November 2021 (has links)
京都大学 / 新制・論文博士 / 博士(医学) / 乙第13453号 / 論医博第2246号 / 新制||医||1055(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 渡邉 大, 教授 林 康紀, 教授 高橋 淳 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
17

Cholinergic innervation of the basal ganglia among human and nonhuman primate species

Stephenson, Alexa Rae 23 July 2015 (has links)
No description available.
18

Caractérisation de la transmission GABAergique dans le globus pallidus externe chez des modèles rongeurs des maladies de Parkinson et de Huntington / Investigation of GABAergic neurotransmission in the external globus pallidus in rodent models of Parkinson and huntington’s diseases

Chazalon, Marine 18 December 2015 (has links)
Les ganglions de la base (GB) sont un ensemble de noyaux sous-corticaux impliqués dans les fonctions motrices, mnésiques et cognitives. Le globus pallidus externe (GPe) est un noyau GABAergique, qui tient la place de structure relais entre le striatum et le noyau sous-thalamique au sein du réseau des GB. Les changements de mode et de fréquence de décharge des neurones du GPe sont connus pour être les signatures électro-physiologiques des maladies de Parkinson (MP) et de Huntington (MH). Dans la MP, où les concentrations de GABA extracellulaires sont anormalement élevées dans le GPe, il est admis que la voie striato-pallidale (STR-GPe) est hyperactive, ce qui contribue à l’hypoactivité des neurones pallidaux. A l’inverse dans la MH, il est admis que l’hyperactivité des neurones du GPe est due à la dégénérescence de la voie STR-GPe levant la principale influence inhibitrice du GPe. Cependant, les mécanismes moléculaires impliqués dans ces changements d’activité pallidale sont encore peu connus. Nous avons donc entrepris des expériences de biologie moléculaire, d’immunohistochimie et d’électrophysiologie sur tranches, afin de mieux caractériser l’origine des modifications de transmission GABAergique conduisant aux changements d’activité électro-physiologique des neurones du GPe dans ces deux pathologies à l’aide de modèles animaux. Mes principaux résultats montrent l’apparition d’une inhibition tonique dans les neurones du GPe due à un déficit de recapture du GABA dans la MP et une réduction précoce de la transmission synaptique GABAergique dans la MH. Ces résultats suggèrent que les altérations de la transmission GABAergique contribuent à la physiopathologie de la MP et la MH. / The basal ganglia (BG) are a group of sub-cortical nuclei involved in motor, memory and cognitive functions. In the BG, the GABAergic external globus pallidus (GPe) holds a position of relay nucleus between the striatum (STR) and the sub thalamic nucleus within the indirect pathway of the BG. Modifications of rate and pattern of activity of this nucleus are known to be the electrophysiological signatures of Parkinson’s (PD) and Huntington’s diseases (HD). In PD, hyperactivity of the striato-pallidal (STR-GPe) pathway is thought to be responsible for the increase of the extracellular GABAergic concentrations in the GPe and participate to the hypoactivity of pallidal neurons observed in experimental Parkinsonism. In contrast, during HD, it is recognized that the hyperactivity of GPe neurons is due to the degeneration of striato-pallidal neurons and thus to the reduction of the main source of pallidal GABAergic inhibition. However, the molecular mechanisms involved in these modifications of pallidal activity are not well characterized. Therefore, using PD and HD animal models, the 6-OHDA rodents and the R6-1 transgenic mice respectively, we have performed molecular biology, immunohistochemistry and electrophysiological in vitro experiments in order to better understand the origin of GABAergic transmission alterations leading to changes in electrophysiological activity of GPe neurons into these two pathologies. My main results show the apparition of a tonic GABAergic inhibition due to a deficit of GABA uptake in PD and a early stage reduction of GABAergic synaptic transmission in HD. Altogether, these results suggest that alterations of GABAergic transmission contribute to the pathophysiology of PD and HD.
19

Etude dynamique de la génération des oscillations Beta dans la maladie de Parkinson : approche électrophysiologique et optogénétique / Dynamic study of the generation of beta oscillations in Parkinson's disease

De la crompe de la boissiere, Brice 09 December 2016 (has links)
Les ganglions de la base (GB) forment une boucle complexe avec le cortex et le thalamus qui est impliquée dans la sélection de l’action et le contrôle du mouvement. Les activités oscillatoires synchronisées dans le réseau des GB ont été proposées comme pouvant jouer un rôle essentiel dans la coordination du flux de l’information au sein de ces circuits neuronaux. Ainsi, leur dérégulation dans le temps et l’espace pourrait devenir pathologique. Dans la maladie de Parkinson (MP), l’expression anormalement élevée d’oscillations neuronales comprises dans les gammes de fréquences beta (β, 10-30 Hz) serait la cause des déficits moteurs (akinétique et bradykinétique) de cette maladie. Cependant, les réseaux neuronaux à l’origine des oscillations β et l’implication physiopathologique de celles-ci restent encore inconnus. Le noyau sous-thalamique (NST) est un carrefour anatomique des GB situé au centre de réseaux potentiellement impliqués dans l’émergence de ces états hyper-synchronisés. L’objectif de cette thèse était de déterminer le rôle causal des principales entrées du NST (i.e. le cortex moteur, le globus pallidus, et le noyau parafasciculaire du thalamus) dans le maintien et la propagation des oscillations β. Pour cela, nous avons développé des approches de manipulation optogénétique combinées à des enregistrements électrophysiologiques in vivo dans un modèle rongeur de la MP. L’ensemble de nos travaux démontre la contribution respective des différents circuits neuronaux interrogés et souligne l’importance du globus pallidus dans le contrôle de la propagation et du maintien des oscillations β dans l’ensemble de la boucle des GB. / The basal-ganglia (BG) form a complex loop with the cortex and the thalamus that is involved in action selection and movement control. Synchronized oscillatory activities in basal-ganglia neuronal circuits have been proposed to play a key role in coordinating information flow within this neuronal network. If synchronized oscillatory activities are important for normal motor function, their dysregulation in space and time could be pathological. Indeed, in Parkinson’s disease (PD), many studies have reported an abnormal increase in the expression level of neuronal oscillations contain in the beta (β) frequency range (15-30 Hz). These abnormal β oscillations have been correlated with two mains symptoms of PD: akinesia/bradykinesia. However, which BG neuronal circuits generate those abnormal β oscillations, and whether they play a causal role in PD motor dysfunction is not known. The subthalamic nucleus (STN) is a key nucleus in BG that receives converging inputs from the motor cortex, the parafascicular thalamic nucleus and the globus pallidus. Here, we used a rat model of PD combined with in vivo electrophysiological recordings and optogenetic silencing to investigate how selective manipulation of STN inputs causally influence BG network dynamic. Our data highlight the causal role of the globus pallidus in the generation and propagation mechanisms of abnormal β-oscillations.
20

Intracerebral quantitative chromophore estimation from reflectance spectra captured during deep brain stimulation implantation

Johansson, Johannes, Wårdell, Karin January 2013 (has links)
Quantification of blood fraction (fblood), blood oxygenation (S<img src="http://onlinelibrary.wiley.com/store/10.1002/jbio.201200055/asset/equation/tex2gif-inf-2.gif?v=1&amp;t=h70man4a&amp;s=4a6d004ec608a2a6ec8e8597f73bdb6be30286e8" />), melanin, lipofuscin and oxidised and reduced Cytochrome aa 3 and c was done from diffuse reflectance spectra captured in cortex, white matter, globus pallidus internus (GPi) and subthalamus during stereotactic implantations of 29 deep brain stimulation (DBS) electrodes with the aim of investigating whether the chromophores can give physiological information about the targets for DBS. Double-sided Mann-Whitney U -tests showed more lipofuscin in GPi compared to white matter and subthalamus (p &lt; 0.05). Compared to the other structures, fbloodwas significantly higher in cortex (p &lt; 0.05) and S<img src="http://onlinelibrary.wiley.com/store/10.1002/jbio.201200055/asset/equation/tex2gif-inf-4.gif?v=1&amp;t=h70man4c&amp;s=855c70105e88a292de25618487573dfc7d30e08a" /> lower in GPi (p &lt; 0.05). Median values and range for fblood were 1.0 [0.2–6.0]% in the cortex, 0.3 [0.1–8.2]% in white matter, 0.2 [0.1–0.8]% in the GPi and 0.2 [0.1–11.7]% in the subthalamus. Corresponding values for S<img src="http://onlinelibrary.wiley.com/store/10.1002/jbio.201200055/asset/equation/tex2gif-inf-6.gif?v=1&amp;t=h70man4e&amp;s=151ec25bee7270bcfc2292e70d6f4aea18348dbc" /> was 20 [0–81]% in the cortex, 29 [0–78]% in white matter, 0 [0–0]% in the GPi and 0 [0–92]% in the subthalamus. In conclusion, the measurements indicate very low oxygenation and blood volume for DBS patients, especially in the GPi. It would be of great interest to investigate whether this is due to the disease, the normal situation or an artefact of doing invasive measurements.

Page generated in 0.0548 seconds