• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 70
  • 18
  • 12
  • 7
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 308
  • 116
  • 44
  • 35
  • 33
  • 32
  • 29
  • 26
  • 23
  • 22
  • 21
  • 21
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Conflict and cooperation in vertebrate societies

Sanderson, Jennifer Louise January 2012 (has links)
Within animal societies, individuals often differ greatly in their level of investment in cooperative activities. Individuals are predicted to show high cooperative investment if high levels of relatedness lead to large indirect fitness benefits, or if differences in individual characteristics such as age, sex, rank, or body condition increase the direct fitness benefits of helping. However, individual differences often persist after these differences are controlled for; a residual variation that remains unexplained. Understanding the proximate mechanisms underlying variation in behaviour can give novel insights into the selection pressures shaping behavioural differences. This suggests that a research focus onto the proximate mechanisms underpinning cooperative behaviours is needed to further our understanding of why individuals behave differently within social groups. In this thesis, I address this shortfall in understanding by investigating hormonal variation alongside individual differences in cooperative investment in the banded mongoose (Mungos mungo). Banded mongooses are a highly social carnivore with two highly conspicuous forms of cooperative offspring care that are easily measurable and show large inter-individual variation. In chapter 3, I demonstrate a negative carry-over effect of investment in offspring care in consecutive breeding attempts. I show that this carry-over effect is mediated by variation in glucocorticoid concentrations, which may be attributable to the energetic costs of helping. Glucocorticoids predict investment in offspring care, suggesting that this mechanism may drive inter-individual variation in cooperative investment. In chapter 4, I find evidence for a testosterone mediated trade-off between offspring care and mating effort, which suggests that inter-individual differences may also be driven by variation in the costs of helping attributable to missed mating opportunities. In chapter 5, I use simulated territorial intrusions to show that there is unlikely to be a trade-off between offspring care and territory defence in banded mongoose societies. However, carers and non-carers show a differential physiological response to territorial intrusion, suggesting that there may be a more subtle behavioural trade-off that occurs post-intrusion. In chapter 6, I find evidence for consistent individual differences in both cooperative and competitive behaviours, which suggests that individual differences in adult behaviour may be determined by early-life effects. Individual differences in cooperative investment are positively correlated, suggesting that individuals are not specialised to different cooperative activities, but are consistently either helpful or selfish. Together, these results give insights into the selection pressures shaping individual differences and highlight endocrine research as a valuable tool in understanding the evolution of cooperative societies.
22

Impact of Single Dose Systemic Glucocorticoids on Blood Leukocytes In Hospitalized Adults

Alshehri, Samah, Alshehri, Samah January 2017 (has links)
Background: Glucocorticoids (GCs) may cause leukocytosis via several mechanisms. This study was conducted to examine the impact of a single dose of systemic GCs on total white blood cell count (WBC), absolute neutrophilic count (ANC), and absolute lymphocytic count (ALC) in hospitalized adults without bacterial infections. Methods: This retrospective cohort study was carried out in a university hospital. Hospitalized patients 18 years of age or older who received a single dose of a systemic GC were included. Baseline blood cell counts prior to GC administration were required for subjects to be included in the study. Glucocorticoids included in this study were oral or intravenous methylprednisolone and hydrocortisone and oral prednisone. Results: A total of 99 patients were included in the study. After the administration of a single GC dose, ALC began to drop significantly as early as the interval of 0 - <6 hours [median (IQR), 0.90 (0.60-1.10), P=0.011]. ANC increased significantly as early as the interval of 6 - <12 hours [median (IQR), 6.22 (4.45-7.33), P=0.049] and continued to be significantly increased from baseline up to 42 hours from GC administration. Total WBC counts significantly decreased in the 6 - <12 hours interval [median(IQR), 6.90 (5.15-8.85) P=0.03] and then increased significantly in the12 - <18 hours interval [median(IQR), 8.80 (6.50-11.95), P= 0.002]. This effect on total WBC count continued to be significant until the 36 - <42 hours interval [median (IQR), 10.55 (7.23-13.03), P<0.001] Conclusion: ANC, followed by WBC count increase significantly after a single dose administration of GC in hospitalized patients within 12 hours of a single GC dose. Variability in timing and extent of leukocyte and ANC elevation was seen. A decrease in WBC and ALC was seen within the first few hours of GC dose. High doses of GC and autoimmune disease were associated with greater elevation in WBC counts.
23

Quantifying Eukaryotic Gene Regulation in Hormone Response and Disease.

Vockley, Christopher Vockley January 2016 (has links)
<p>Quantifying the function of mammalian enhancers at the genome or population scale has been longstanding challenge in the field of gene regulation. Studies of individual enhancers have provided anecdotal evidence on which many foundational assumptions in the field are based. Genome-scale studies have revealed that the number of sites bound by a given transcription factor far outnumber the genes that the factor regulates. In this dissertation we describe a new method, chromatin immune-enriched reporter assays (ChIP-reporters), and use that approach to comprehensively test the enhancer activity of genomic loci bound by the glucocorticoid receptor (GR). Integrative genomics analyses of our ChIP-reporter data revealed an unexpected mechanism of glucocorticoid (GC)-induced gene regulation. In that mechanism, only the minority of GR bound sites acts as GC-inducible enhancers. Many non-GC-inducible GR binding sites interact with GC-induced sites via chromatin looping. These interactions can increase the activity of GC-induced enhancers. Finally, we describe a method that enables the detection and characterization of the functional effects of non-coding genetic variation on enhancer activity at the population scale. Taken together, these studies yield both mechanistic and genetic evidence that provides context that informs the understanding of the effects of multiple enhancer variants on gene expression.</p> / Dissertation
24

The effect of antenatal glucocorticoid treatment on fetal heart maturation in mice

Agnew, Emma Jane January 2018 (has links)
Glucocorticoids - cortisol and corticosterone - are steroid hormones synthesised in the adrenal gland that are important mediators of the stress response. Glucocorticoids are also vital in development to aid in organ maturation. Endogenous glucocorticoid levels rapidly rise before birth in all mammals to promote fetal organ maturation. Because preterm birth occurs before this natural rise in glucocorticoid levels, pregnant women at risk of preterm delivery are administered synthetic glucocorticoids to mature the fetal lung and aid neonatal survival. Mice that globally lack the glucocorticoid receptor (GR) die at birth, attributed to lung immaturity. Effects on tissues other than the lung remain less well characterised. Previous work has shown endogenous glucocorticoid action is also essential to mature the mouse fetal heart. Mice globally lacking GR have small, functionally and structurally immature hearts. Mice with tissue-specific deletion of GR in cardiomyocytes and vascular smooth muscle cells (SMGRKO mice; generated using Sm22α-Cre) also have an increased risk of death around the time of birth, suggesting that glucocorticoid maturation of the cardiovascular system is important for neonatal survival. GR expression within the fetal mouse heart initiates at E10.5 but GR in the myocardium is not activated and localised to the nucleus until E15.5. This suggests that mice can respond to glucocorticoid from E10.5. Here, it was hypothesised that antenatal glucocorticoid exposure, prior to the increase in endogenous glucocorticoid levels, would advance fetal heart maturation and this will depend on cardiovascular GR. To investigate the effects of antenatal glucocorticoid treatment on fetal heart maturation in mid-gestation and identify effects mediated by GR, mice with a conditional deletion of GR in cardiomyocytes and vascular smooth muscle cells were studied (SMGRKO mice). Pregnant mice received dexamethasone (dex) in the drinking water from E12.5-E15.5. Levels of Fkbp5 mRNA (a marker of glucocorticoid action) were unchanged between control and SMGRKO mice at E15.5 or following dex treatment. This suggested a lack of response to dex treatment. However, liquid chromatography mass spectrometry measurement confirmed the presence of dex and its active metabolite 6- hydroxydexamethasone (6OHDex) in livers of E15.5 fetuses from dex treated dams (fetal: Dex 0.46 ± 0.1 ng/g, 6OHDex 13.6 ± 0.35 ng/g; dam: Dex 7.96 ± 3.65 ng/g, 6OHDex 4.75 ± 1.2 ng/g). Livers of fetuses exposed to dex had lower levels of the naturally occurring active glucocorticoid, corticosterone, compared to vehicle treated fetuses. This suggests HPA axis suppression in dex exposed fetuses. Maternal liver showed no significant difference in corticosterone levels between dex and vehicle treated mice, suggesting that whilst dex suppressed the HPA axis in fetuses, it did not in the dams. To determine any persistent effects of early antenatal dex treatment on fetal heart, a later time point in gestation, E17.5, was also assessed. At E17.5, 2-days following cessation of dex treatment, dex and its metabolites were undetectable in the fetal and maternal liver. However, corticosterone levels remained reduced in fetal liver at E17.5 in dex exposed animals (vehicle treated: 4.31 ± 0.47 ng/g, Dex treated: 1.72 ± 0.42 ng/g, p < 0.01), whilst levels in the dam liver did not differ from vehicle treated controls. This suggests prolonged HPA axis suppression following dex treatment, which reduced the natural late-gestation rise in glucocorticoids required for fetal organ maturation. To determine whether early antenatal dex treatment could advance fetal heart function, Doppler imaging with a Vevo 770 high frequency ultrasound imager was used. Isovolumetric contraction time, isovolumetric relaxation time and ejection time of the left ventricle were unaltered by dex treatment. However, at E15.5 the mitral deceleration index (MDI), a measure of diastolic function that takes into account loading conditions, was 1.5 fold lower in vehicle treated SMGRKO mice than control (Cre-) littermates (p < 0.05). This reduction in SMGRKO mice suggests glucocorticoids are required within the fetal cardiomyocytes and/or vascular smooth muscle cells to mature the diastolic function of the fetal heart. Dex exposure had no effect on MDI in SMGRKO fetuses, but reduced the MDI by 1.5 fold in control mice to similar levels as in SMGRKO mice (p < 0.05). RNA analysis revealed a trend (p=0.09) for reduced levels of Nr3c1 mRNA (encoding GR) in hearts of E15.5 control (Cre-) fetuses following dex treatment. Although this requires confirmation at the level of GR protein, this finding together with the lack of induction of the GR target, Fkbp5, suggests dex may cause glucocorticoid resistance through down-regulation of GR. At E17.5, 2-days following cessation of dex there were no changes in systolic parameters and the reduction in MDI found at E15.5, following dex, had normalised. Litter size was reduced (close to a 50% reduction) at E17.5 in dex treated mice. This was similar between SMGRKO and control fetuses. The cause of death was not established, but potentially could be due to the reduction in the natural rise in glucocorticoids at E17.5, previously shown to be important for fetal heart maturation. It is therefore possible that mice with more immature hearts may die before reaching E17.5. RNA analysis was undertaken to determine any mechanistic alterations following dex treatment, which could support fetal heart functional alterations found at E15.5. In contrast to expectation, dex also decreased expression of mRNA encoding the calcium handling proteins SERCA2a, NCX1, and CaV1.2 in E15.5 fetal mouse hearts in both control and SMGRKO mice (p < 0.05), compared with the respective vehicle treated mice. These proteins had previously shown to be induced by glucocorticoid action in cardiomyocytes. However, the similar down-regulation in both genotypes indicates this effect is not dependent on GR in cardiomyocytes. Lowered SERCA2a activity following dex treatment could contribute to the changes in MDI observed in control mice. Similarly, Scnn1a and Kcnj12 mRNA levels, previously found to be induced by glucocorticoids in cardiomyocytes, were down-regulated in the E15.5 fetal heart in vivo following dex. Collectively, these data are consistent with glucocorticoid resistance or down-regulation of glucocorticoid action in E15.5 fetal hearts following dex administration. Mutations in KCNJ12 are associated with long QT syndrome, which is characterised by a delayed repolarisation of the heart following each contraction. An altered relaxation of the fetal heart found in control mice following dex could therefore be due to a prolongation of the cardiac action potential, particularly with a delayed repolarisation, because of lower Kcnj12 expression. At E17.5, there were no significant differences in expression of calcium handling genes or ion channel mRNAs between genotypes or following earlier dex exposure. Thus, effects of dex on mRNA expression level may not persist, which could account for the lack of functional changes observed 2-days following cessation of treatment. Because effects seen in vivo with dex treatment were contrary to those predicted, and to further investigate the effect of dex upon calcium content, an in vitro model of primary fetal E15.5 cardiomyocytes was used. Cardiomyocytes were treated with dex for 24 hours and effects on membrane potential voltage changes and calcium transients measured. Following dex, isolated fetal cardiomyocytes showed an elongated repolarisation phase of the action potential (untreated: 120.45 ± 13.81 ms, Dex: 142.34 ± 12.97 ms, p < 0.01), and duration of calcium transients (untreated: 103.31 ± 13.78 ms, Dex: 120.43 ± 23.36 ms, p < 0.05). This assessment of fetal cardiomyocytes was preliminary work to aid in the understanding of mechanisms of fetal heart functional alterations associated with glucocorticoid regulation. The results suggest glucocorticoids may be important in regulating calcium levels. In summary, dex treatment in mice from E12.5-E15.5 did not advance fetal heart maturation. It reduced litter size at E17.5, irrespective of whether GR was expressed in cardiomyocytes or not. The normal late-gestation increase in endogenous glucocorticoid levels in the fetus was reduced by dex, even after treatment finished. / The suppression of corticosterone levels following antenatal dex may reduce maturation of the heart at E15.5 and could be responsible for the reduction in litter size. Downregulation of GR in the fetal heart, may be a mechanism that results in glucocorticoid resistance following antenatal dex treatment, which could explain the lack of beneficial effects of antenatal dex upon fetal heart maturation in these experiments in mice.
25

The Role of Glucocorticoid Receptor Signaling in Zebrafish Development

Nesan, Dinushan January 2013 (has links)
These studies present a series of novel roles for glucocorticoid signaling in the developing zebrafish embryo. The best-characterized roles of cortisol, the primary circulating corticosteroid in teleost fish, are known to occur by the activation of the glucocorticoid receptor (GR) in the post-hatch animal to mobilize energy reserves for response and recovery from stressful situations. For the first time, evidence is presented that GR and cortisol are key developmental regulators in the pre-hatch zebrafish embryo and that glucocorticoid signaling modulates multiple critical developmental pathways and affects embryogenesis in diverse ways. Prior to these experiments, very little was known regarding the developmental role of glucocorticoids in lower vertebrates. In mammalian models, there has been extensive study of the action of these steroids in late-stage organ maturation, and they have a variety of clinical and biomedical applications. However, in fish, there was a relative dearth of information regarding the basic dynamics and potential functional roles of cortisol and GR in embryogenesis. Zebrafish are a popular model for developmental study, with optically transparent embryos that allow for reliable observation. Additionally, the zebrafish genome is fully sequenced and extensively annotated, and a variety of molecular biology techniques are well-established in the existing literature. The zebrafish is also now recognized as an advantageous model for endocrine and stress axis studies, as it expresses a single GR gene, unique among teleosts but comparable to mammals. Preliminary studies published in the literature described cortisol and GR as deposited in the zebrafish embryo prior to fertilization, and showed their expression declining prior to hatch, then rising significantly as larvae approach the stage of first feeding. This dynamic expression of both ligand and receptor during embryogenesis, combined with knowledge from mammalian models, led to the hypothesis that glucocorticoid signaling may be functionally relevant in zebrafish development. A variety of techniques were used to examine the roles of cortisol and GR in the zebrafish embryo. Morpholino oligonucleotides were injected into one-cell embryos to block GR protein translation, allowing for the identification of GR-responsive developmental events and putative GR target genes. High-density microarray analysis of GR morphants presented numerous novel genes and pathways that are modulated by glucocorticoid signaling in the embryo. The ability to microinject molecules into a newly-fertilized zygote also allowed for other manipulations, including the addition of exogenous cortisol or the use of a cortisol-specific antibody to sequester maternally deposited cortisol. These studies provided the first evidence regarding the functional importance of the maternal cortisol deposition in the zebrafish oocyte prior to fertilization. The detailed temporal and spatial expression of GR mRNA and protein in the developing embryo has been characterized for the first time. GR expression is widespread, especially in developing mesoderm, and de novo GR transcription in the zebrafish embryo begins within 12 hours post fertilization. Lack of GR protein expression in the developing zebrafish embryo causes reduced growth, delayed somitogenesis, altered myogenesis, and severely reduces post-hatch survival. Additionally, GR modulates the expression of bone morphogenetic proteins, a family of morphogens that are involved in major developmental events including dorsoventral patterning, somitogenesis, myogenesis, and organogenesis. Reduction in GR protein content in the developing embryo is also linked to other major developmental processes including neurogenesis, eye formation, cellular adhesion, and development and function of the hypothalamic-pituitary-interrenal (HPI) axis. Cortisol in the early embryo, which is contributed entirely by maternal deposition prior to fertilization, is an important regulator of cardiogenesis and development of the HPI axis. Modulation of cortisol content in the early embryo causes an impairment of the post-hatch response to a physical stressor, as larvae exposed to increased cortisol during embryogenesis displayed an inability to increase heart rate in response to an acute physical stress, and did not display the classical increase in cortisol that follows a stressor challenge. Embryos that experience lowered glucocorticoid signaling in development tend to have a heightened post-hatch response to stress, further supporting the conclusion that HPI axis development is regulated by glucocorticoid signaling. These studies have identified key cardiogenic and HPI axis genes that are GR-responsive, providing mechanistic explanations for these phenotypic changes. Together these findings indicate that maternal deposition of cortisol in the embryo can pattern the post-hatch larva and has definitive impacts on performance as the offspring begin locomotion and approach feeding stages. In total, these studies demonstrate that glucocorticoid signaling is critically important to zebrafish embryogenesis, defining novel roles that are completely independent of the classical vertebrate stress response. These functions have significant effects on diverse developmental pathways and processes, and with the potential applicability of the zebrafish model to studies in higher vertebrates, may have important biomedical applications.
26

Investigations of The Effects of Glucocorticoid Receptor SNPs and SUMO-2 Autoantibody in Patients with Systemic Lupus Erythematosus

Lee, Bi-yao 30 July 2008 (has links)
For more than fifty years glucocorticoids (GCs) has been used to treat a wide range of inflammatory diseases, such as allergies, asthma, rheumatoid arthritis, and autoimmune diseases, due to its potentiality on the antiinflammatory and immunomodulatory effects. The anti-inflammation actions of glucocorticoid were mediated by an intracellular receptor, glucocorticoid receptor (GR), a member of the nuclear receptor family of ligand-dependent transcription factor. Upon activation by their ligand, GRs translocated to the nuclear and then bound to glucocorticoid responsive element (GRE) or negative glucocorticoid responsive elemen (nGRE). The administration of GCs depended on the acuity of disease and on the responses of patient clinically. Although some Systemic Lupus Erythematosus (SLE) patients given the maximal steroid doses, the response to the therapy remained poorly, and thus called ¡§glucocorticoid resistance¡¨. Despite the fact that the side effects and complications in SLE patients may result from the restrictions of physic; it has been documented that there were some relationships between the glucocorticoid resistance with the polymorphisms of GR, and the levels of glucocorticoid receptor beta. However, no significant differences in the GR polymorphisns (TthIII, ER22/23EK, N363S, BclI and I559N) between controls and SLE patients were found and there were no significant differences found on the levels of SUMO-2 antibody between patients with active and inactive SLE in this study. Neverthless, a significant association on the the allelic polymorphism of BclI was observed in patients with glucocorticoid resistance. Additionally, the expression of GR£] in patients with SLE was higher than that of controls and the TthIII CT genotype was associated with GR£\ expression.
27

Glucocorticoids Regulate Kisspeptin Neurons during Stress and Contribute to Infertility and Obesity in Leptin-Deficient Mice

Wang, Oulu 18 December 2012 (has links)
Stressors generate adaptive responses, including transient suppression of reproductive function. Natural selection depends on successful reproduction, but inhibition of reproduction to survive famine or escape predation allows animals to survive to reproduce at a later time. The cellular locations and mechanisms responsible for inhibiting and reactivating the reproductive axis during and after stress, respectively, are not well understood. We demonstrated that stress-induced elevation in glucocorticoids affects hypothalamic neurons that secrete kisspeptin (KISS1), an important reproductive hormone. Stressors that stimulated glucocorticoid secretion, as well as glucocorticoid administration itself, inhibited Kiss1 mRNA expression, while conditions that did not change glucocorticoid secretion did not alter Kiss1 mRNA expression. In mice lacking glucocorticoid receptor specifically in kisspeptin-containing neurons, Kiss1 mRNA expression was no longer inhibited during restraint stress despite a rise in corticosterone, and both testosterone and copulatory behaviors showed accelerated recovery in the post-traumatic period. We also demonstrated that increased glucocorticoid secretion contributed to infertility and obesity in leptin-deficient mice. Leptin deficiency creates a chronic state of perceived starvation, and leptin-deficient mice exhibit elevated plasma glucocorticoid concentrations, morbid obesity, and infertility. Leptin-deficient, glucocorticoid-deficient mice exhibited decreased body weight and fat composition, decreased hyperphagia, and normal fertility. When supplemented with glucocorticoids back to the initial levels present in leptin deficiency, these mice gained weight and became infertile. Thus, leptin is not required for fertility as previously believed, and glucocorticoids can contribute to obesity and suppress fertility independently of leptin signaling. Together, these findings implicate glucocorticoids in the regulation of obesity and reproductive inhibition during stress, including perceived starvation caused by leptin deficiency. These studies may provide novel mechanisms and molecular targets in the reproductive and metabolic aspects of disorders characterized by glucocorticoid dysregulation, including post-traumatic stress disorder, anorexia nervosa, and mood disorders.
28

Class I Lysine Deacetylases Facilitate Glucocorticoid Receptor-Mediated Transcriptional Activation

Kadiyala, Vineela January 2013 (has links)
Glucocorticoid receptor (GR) is known to associate with KATs and KDACs to regulate transcription. The current model of GR-mediated transcription focuses on agonist-dependent recruitment of KATs to acetylate histones and casts KDACs as corepressors in the presence of antagonist. Recent studies have shown KDACs to function as coactivators in the GR-mediated activation of the MMTV promoter and inhibition of KDACs impairs this activation. Nevertheless, the effect of KDAC inhibition on the GR-regulated transcriptome is unknown. Our expression profiling studies in a glucocorticoid (GC) responsive hepatoma-derived cell line, show that the class I-selective KDACi, VPA, has a profound impact on the GR-regulated hepatic transcriptome. VPA treatment alone mimics GC signaling at some GR-target genes and cooperates with GC to activate a small number of genes. However, the predominant effect of VPA, seen in more than 50% of the GR-target genes, is impairment of normal GR-mediated activation. This suggests that KDACs play a significant role in facilitating GR signaling. We have shown that VPA does not impair GR processing and that the inhibitory effects of VPA are due to impaired transcription. We have also determined that apicidin, a structurally distinct class I-selective KDACi, impairs GR-transactivation similar to VPA, while valpromide, a structural analog of VPA without KDACi activity, does not. In addition, siRNA-mediated depletion of KDAC1 fully or partially mimics the effects of VPA at most of the VPA impaired GR-target genes and co-depletion of KDACs 1 and 2 caused full or partial impairment of Dex-activation at a few other genes. Collectively, our results show that class-I KDACs facilitate GR-mediated transcription at most of the GR-target genes and that KDAC1 alone or in co-operation with KDAC2 is required for efficient GR-mediated transactivation. Furthermore, ChIP assays have shown that active KDACs are constitutively present at the gene promoters and that KDAC inhibition does not affect GR binding to the DNA. Thus KDACs could potentially deacetylate the coregulators necessary for transcriptional activation. Finally, KDACs are known targets of a group of drugs either being used or evaluated in the treatment of cancer and other diseases. These results also pose ramifications for the clinical use of these drugs.
29

Characterization of Glucocorticoid Receptor Promoter Methylation in Breast Cancer

Nesset, Kirsten A. 26 September 2012 (has links)
Epidemiological studies have identified psychological stress as a significant risk factor in breast cancer. The stress response is regulated by the HPA axis in the brain and is mediated by glucocorticoid receptor (GR) signalling. It has been found that early life events can affect epigenetic programming of GR, and methylation of the GR promoter has been reported in colorectal tumourigenesis. Decreased GR expression has also been observed in breast cancer. In addition, it has been previously demonstrated that unliganded GR can serve as a direct activator of the BRCA1 promoter in mammary epithelial cells. We propose a model whereby methylation of the GR promoter in the breast significantly lowers GR expression, resulting in insufficient BRCA1 promoter activation and an increased risk of developing cancer. Antibody-based methylated DNA enrichment was followed by qPCR analysis (MeDIP-qPCR) in a novel assay developed to detect locus-specific methylation levels. It was found that 13% of primary breast tumours were hypermethylated at the GR proximal promoter whereas no methylation was detected in normal tissue. RT-PCR and 5’ RACE analysis identified exon 1B as the predominant alternative first exon in the breast. Tumours methylated near exon 1B had decreased GR expression compared to unmethylated samples, suggesting that this region is important for transcriptional regulation of GR. It was also determined that GR and BRCA1 expression was decreased in breast tumour compared to normal tissue. Furthermore, the relative expression of GR and BRCA1 measured by qRT-PCR was correlated in normal tissue but this association was not found in tumour tissue. From this, it appears that lower GR levels with associated decreased BRCA1 expression in tissues may be a predisposing factor for breast cancer. Based on these results we propose a role for GR as a potential tumour suppressor gene in the breast due to its association with BRCA1, also a tumour suppressor gene, as well as its consistently decreased expression in breast tumours and methylation of its proximal promoter in a subset of cancer patients. / Thesis (Master, Biochemistry) -- Queen's University, 2012-09-26 18:19:11.006
30

Glucocorticoid receptors in severe inflammation : Experimental and clinical studies

Bergquist, Maria January 2014 (has links)
Septic shock is one of the most common causes of mortality in intensive care, in spite of antibiotic treatment. Glucocorticoid treatment can be used to blunt an overwhelming immune response in severe inflammation. The varying effects of glucocorticoid treatment in sepsis are poorly understood, with consequences for the clinical guidelines for treatment. Glucocorticoids are potent anti-inflammatory mediators which exert their effects through the glucocorticoid receptor (GR). Deeper understanding about the mechanisms of GR signalling may help to guide and improve glucocorticoid treatment. The aim of this thesis was to analyse GR expression and binding capacity in experimental and human septic shock and severe inflammation with cellular specificity using flow cytometry. In the late phase of a murine sepsis model, we observed decreased GR expression in leukocytes. In a murine model of early endotoxic shock, we observed decreased GR binding capacity in spite of an increased expression, in neutrophils. Glucocorticoid treatment was beneficial only when administered early in both models. Compared to healthy subjects, GR expression was increased in leukocytes from patients during the initial sepsis phase, while GR binding capacity was only increased in lymphocytes and monocytes. In contrast, neutrophils and other leukocyte subsets displayed decreased GR binding capacity. Neutrophil numbers were increased in all patients with sepsis compared to healthy subjects. We also studied patients with burn injury after admission before any infectious event had likely occurred, and on day 7 post admission, when several of the patients had been diagnosed with sepsis. GR expression and binding capacity was increased in leukocytes on admission as compared to healthy subjects, and patients diagnosed with sepsis on day 7 had a further increased GR expression in T lymphocytes. GR binding capacity was decreased in proportion to the extent of the burn injury on day 14 post admission. In conclusion, sepsis and severe inflammation have significant impact on the expression and function of GR, likely to influence the efficiency of glucocorticoid treatment. In addition, glucocorticoid treatment is beneficial only when given early in these models of experimental sepsis.

Page generated in 0.0702 seconds