• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 34
  • 10
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Novel methodology for the synthesis of ¹³C-Labelled phenols and its application to the total synthesis of polyphenols

Marshall, Laura J. January 2010 (has links)
The base-catalysed reaction of 4H-pyran-4-one with a range of nucleophiles, namely diethyl malonate, ethyl acetoacetate, nitromethane, acetylacetone and ethyl cyanoacetate, was developed as a reliable, high yielding method for the preparation of para-substituted phenols. The methodology was extended to include the use of the substituted pyranones, maltol, 2,6-dimethyl-4H-pyran-4-one and diethyl chelidonate. Reactions were studied using conventional heating methods and microwave irradiation. Microwave irradiation had definite beneficial effects, with improved yields, reduced reaction times and cleaner reaction profiles. The potential of this methodology was examined for the regioselective placement of ¹³C-atoms into benzene rings using ¹³C-labelled nucleophiles or ¹³C-labelled 4H-pyran-4-ones. [3,5-13C₂]4H-Pyran-4-one and [2,6-13C₂]4H-pyran-4-one were prepared from various ¹³C-labelled versions of triethyl orthoformate and acetone. This methodology was applied to the synthesis of [1,3,5-¹³C₃]gallic acid, via the base-catalysed reaction of [3,5-¹³C₂]4H-pyran-4-one with diethyl [2-¹³C]malonate, followed by subsequent transformations to yield [1,3,5-¹³C₃]gallic acid. The preparation of [2-¹³C]phloroglucinol was carried out via [2-¹³C]resorcinol, with regioselective placement of a single ¹³C-atom into the aromatic ring. This was accomplished from non-aromatic precursors, with the source of the ¹³C-atom being [¹³C]methyl iodide. The key step in this synthesis was the introduction of the third hydroxyl group, which was achieved using a modified iridium-catalysed C-H activation/borylation/oxidation procedure. The scope of an existing C-H activation/borylation reaction was modified and expanded to include a range of protected resorcinol derivatives. A catalyst system was developed which allowed high conversion to the intermediate arylboronic acids, followed by oxidation using aqueous Oxone® to yield the corresponding phenols. Finally, to demonstrate the potential of these new methods for application in the synthesis of isotopically labelled natural products and polyphenols, the syntheses of ¹³C-labelled anthocyanins were studied. A route was developed that could be applied to the synthesis of either cyanidin-3-glucoside or delphinidin-3-glucoside. Only the final coupling/cyclisation step to yield the desired anthocyanin targets remains to be carried out.
12

Metal ion extractant in microemulsion : where solvent extraction and surfactant science meet / Extractant d’ion métallique en microémulsion : de l’extraction par solvant à la science colloïdale

Bauer, Caroline 10 June 2011 (has links)
Le but du travail est d'étudier la structure supramoléculaire de mélanges de tensioactif hydrophile, n-octyl-beta-glucoside (C8G1), et d'un extractant d'ions métalliques hydrophobe, le tributyl-n-phosphate (TBP), en présence d'eau, d'huile et de sels. Les systèmes classiques d'extraction ionique (composés d'une phase aqueuse, d'huile et d'extractant dont le but est d'extraire un soluté de la phase polaire sont passés en revue. L'aspect colloïdal et les transitions de phases que l'on retrouve dans ces systèmes sont souvent décrits singulièrement. Nous avons transposé l'approche « diagramme de phases » issue de la physico-chimie des systèmes moléculaires organisés à ces systèmes d'extractant afin d'orienter globalement l'analyse de ces systèmes complexes. La discussion est basée sur des considérations géométriques. Un modèle thermodynamique a été développé en considérant les contraintes d'empilement des ces extractants dans le film moléculaire formant les micelles inverses d'extractant dans l'huile. Ce modèle a permis de prédire la solubilité de l'eau au sein de ces micelles inverses ainsi que leurs tailles obtenues expérimentalement. Dans une deuxième partie, le comportement physico-chimique des phases aqueuses et organiques composées respectivement d'eau/C8G1 et de TBP/huile/eau ont été étudiées, en s'intéressant particulièrement aux effets de sels, par des techniques de diffusion de rayons X aux petits angles, diffusion dynamique de la lumière et de spectroscopie UV-visible. Dans la dernière partie la description complète de la microémulsion en faisant varier la balance hydrophile-hydrophobe du mélange C8G1 et TBP a été obtenue en combinant des mesures de diffusion de neutrons aux petits angles et d'analyse chimique (Karl-Fischer, Carbone Organique Total, ICP-OES…). Le comportement co-surfactant du TBP a été déterminé par comparaison aux co-surfactants classiques que sont les n-alcools (4<n<8). Les compositions de films moléculaires mixtes de C8G1/TBP et de C8G1/n-hexanol, obtenues expérimentalement, ont été confirmées par un modèle basé sur des paramètres géométriques moléculaires. Nous avons tenté d'exploiter les propriétés interfaciales de ces molécules pour le contrôle des cinétiques d'extraction liquide-liquide d'ion et la séparation d'ion « sans solvant » par flottation. / The presented work describes the supramolecular structure of mixtures of a hydrophilic surfactant n-octyl-beta-glucoside (C8G1), and the hydrophobic metal ion extractant tributylphosphate (TBP) in n-dodecane/water as well as in the presence of salts.In the first part, basic solvent extraction system, composed of water, oil and extractant, will be introduced. The focus, however, lies on the extraction of multivalent metal ions from the aqueous phase. During this extraction process and in the following thermodynamic equilibrium, aggregation and phase transition in supramolecular assemblies occur, which are already described in literature. Notably, these reports rest on individual studies and specific conclusions, while a general concept is still missing. We therefore suggest the use of generalized phase diagrams to present the physico-chemical behaviour of (amphiphilic) extractant systems. These phase diagrams facilitated the development of a thermodynamic model based on molecular geometry and packing of the extractant molecules in the oil phase. As a result, we are now in the position to predict size and water content of extractant aggregates and, thus, verify the experimental results by calculation.Consequently, the second part presents a systematic study of the aqueous and organic phase of water/C8G1 and water/oil/TBP mixtures. The focus lies on understanding the interaction between metal ions and both amphiphilic molecules by means of small angle x-ray scattering (SAXS), dynamic light scattering (DLS) and UV-Vis spectroscopy. We confirmed the assumption that extraction of metal ions is driven by TBP, while C8G1 remains passive. In the third and last part, microemulsions of C8G1, TBP, water (and salt) and n-dodecane are characterized by small angle neutron scattering (SANS), and chemical analytics (Karl Fischer, total organic carbon, ICP-OES,...). The co-surfactant behaviour of TBP was highlighted by comparison to the classical n-alcohol (4<n<8) co-surfactants. The compositions of the C8G1/TBP and C8G1/n-hexanol interfacial mixed films obtained experimentally were confirmed by the prediction of a model based on the molecular geometrical parameters. We furthermore exploit the interfacial properties of these molecules to control the kinetics of liquid-liquid extraction and attempt a “solvent free” ion separation using flotation.
13

Structure Elucidation and Biological Evaluation of a Novel Steroidal Saponin, Cholestanol Glucoside Isolated from Saraca Asoca Enodophytic Fuungus, Lasiodiplodia Theobromae

Valayil, Jinu Mathew January 2015 (has links) (PDF)
Although the molecular mechanisms underlying the onset and progression of cancer has been unraveled to a great extend, cancer continues to remain a leading cause of death around the world. Clinical efficacy of the existing anticancer drugs are largely compromised by the inherent and acquired resistance of cancer cell types and the severe side effects evoked by chemotherapeutic agents. Hence, the search for novel anticancer drugs with minimum side effects remains an active area of cancer research. Although molecular targeted drugs are preferred over the conventional cytotoxic chemotherapy, the screening of natural compounds with cytotoxic potentialities continues as they can serve as lead structures for the development of tumor selective anticancer drugs. Plants and microorganisms have been the prominent sources of therapeutic agents. Microorganisms being readily renewable, inexhaustible sources of diverse bioactive secondary metabolites are preferred over plants as sources of bioactive compounds. Endophytes are microorganisms that reside within the living tissue of host plant and they enhance the survival value of the host plant by mediating various stress tolerance mechanisms. Endophytic fungi have gained attention as potential sources of bioactive secondary metabolites following the discovery of a taxol producing endophytic fungus Taxomyces adrenae, from Taxus brevifolia. Moreover, endophytes occupy a unique biological niche in which they maintain a balanced interaction with the host organism and other co-inhabiting microorganisms. All these factors contribute to the chemical diversity of the metabolites they produce. Plants restricted to extreme or unique habitats or those with ethnobotanical value are likely to lodge endophytes that possess a unique hoard of secondarymetabolites. Saraca asoca is a traditionalmedicinal plant with its occurrence restricted to countries such as India, Sri Lanka, Burma and Malaysia. The purpose of the present study is to explore the endophytic fungal population associated with S. asoca in search of novel anticancer lead structures. S. asoca was found to house a diverse endophytic fungal population belonging to 37 different species. Identification of the fungal isolates was based on ITS (internal transcribed spacer region) sequence analysis as well as colony and spore characteristics. The organic extracts of all fungal species were assessed for their in vitro cytotoxicities in three human cancer cell lines, HeLa, HepG2 and PC3 byMTT assay. 18 species exhibited remarkable cytotoxic activities, among which Pestalotiopsis sp. 6 exhibited themost significant cytotoxicity. The strain with second highest activity was Lasiodiplodia theobromae. In order to identify the active principle present in the organic extracts of Pestalotiopsis sp. 6 and L. theobromae, the organic extracts were chromatographed on TLC plates and individual compounds were recovered by scraping off from the TLC plates and extracting with methanol. The cytotoxicity assay of the TLC purified compounds suggested the cytotoxic activity of Pestalotiopsis sp.6 to be a synergetic effect of two or more compounds whereas the cytotoxicity of L. theobromae organic extract was largely due to a single compound. Hence the active principle present in L. theobromae organic extract was purified by bioassay - guided column chromatography. Repeated chromatography of the crude extract using three silica gel columns resulted in the isolation of anticancer compound. Based on the analysis of ESI-MS, IR, NMR and UV spectral data, the isolated compound was identified as a novel steroidal saponin, cholestan-3-O-¯-Dglucopyranoside (cholestanol glucoside - CG). The in vitro cytotoxic effects of CG towards seven human cancer cell lines, HeLa, HepG2, PC3, U251,MCF 7, OVCAR3 and A549 were examined. Among the cell lines screened, HeLa cells weremost vulnerable to CG treatment, with an IC50 value of 3.2 ¹M. Hence themode of cell death induction in HeLa cells by CG was further investigated. Analysis of cell cycle progression by propidium iodide (PI) staining revealed that CG arrests the cells in S phase of cell cycle prior to the induction of cell death. The morphological and biochemical features of apoptosis were investigated by nuclear staining, DNA fragmentation assay and Annexin V-FITC/ PI dual staining. All these results suggested that CG effectively induced apoptosis in HeLa cells in a concentration dependent manner. It was also found that CG treatment induced remarkable ROS generation and mitochondrial membrane potential loss. The pretreatment of cells with an antioxidant, N-acetyl cysteine (NAC), blocked CG induced ROS generation, mitochondrialmembrane depolarization and apoptotic cell death. Hence it could be concluded that CG kills the cancer cells by augmenting their basal oxidative stress and hence is less likely to be toxic to normal cells. Moreover, a high Bax to Bcl-2 ratio, high levels of Apaf-1 and p53, activation of procaspase-3 and procaspase-9 and cleavage of PARP were observed in CG treated HeLa cells. Taken together, our results suggested that CG induced apoptosis in HeLa cells via ROS mediated mitochondria dependent pathway. Biosynthesis of secondarymetabolites by filamentous fungi is influenced by the availability of nutrient factors. Therefore, it is essential to optimize the culturemedium components to ensure a maximum and consistent yield of desired metabolite by the fungal isolate. We designed a chemically defined production medium for CG production by L. theobromae. Carbon source, nitrogen source and microelements in the production medium were further optimized in stationary flask cultures to improve the mycelial growth and yield of CG by L. theobromae. The conventional one-factor at a time (OFAT)method was employed for the optimization of carbon and nitrogen sourceswhose contribution effects towards the final yield are large. Response surface methodology (RSM) was employed for the optimization of microelements. Optimization of culturemedium enhanced the yield of CG from 10mg L¡1 to 50mg L¡1. Various secondarymetabolites are produced by organisms in response to different stress conditions. This knowledge has been exploited in plant cell culture systems to increase the yield of particular secondary metabolites by artificial implementation of stress conditions. We investigated the effect of oxidative, osmotic and heat shock stresses on the production of CG by L. theobromae. Heat shock and osmotic stresses in liquid cultures were found to enhance the yield of CG by 1.2-fold, relative to the controls. Oxidative stress by both menadione and H2O2 enhanced the yield by 1.8-fold compared to the controls. Thus oxidative stress proved to be an efficient enhancer of CG production by L. theobromae. These findings ensure a large scale, cost-effective production of CG.
14

Studies on the Evolution of Aromatic Beta-Glucoside Catabolic Systems under Different Stress Conditions in Escherichia coli

Zangoui Nejad Chahkootahi, Parisa January 2014 (has links) (PDF)
The genetic systems involved in the utilisation of aromatic β-glucosides in E. coli consist of the bgl, asc, and chb operons and the locus bglA encoding phospho-β-glucosidase A. The bgl and asc operons are known as cryptic or silent systems since their expression is not sufficient for utilisation of these sugars in wild type strains of E. coli. Their transcriptional activation by different classes of mutations confers a Bgl+ phenotype to the mutant. The maintenance of cryptic genes without accumulating deleterious mutation in spite of being silent is an evolutionary puzzle. Several observations have suggested the possibility that these genes may be expressed under specific physiological conditions conferring a fitness advantage to the organism. The main aim of this study was to investigate the possible role of aromatic β-glucoside catabolic systems of E. coli in combating nutrient stress and microaerobic growth conditions. The results presented in Chapter 2 address the evolution of aromatic β-glucoside catabolic systems when exposed to a novel β-glucoside as the sole substrate. The results indicate that the bgl opeon, the primary system involved in the utilisation of the aromatic β-glucosides arbutin and salicin, is also involved in esculin utilisation. In the absence of bglB encoding the enzyme phospho-β-glucosidase B, activation of the silent asc operon enables esculin utilisation. The bglA gene encoding phospho-β-glucosidase A specific for arbutin, can undergo successive mutations to evolve the ability to hydrolyse esculin and salicin sequentially when bglB and ascB are absent. The Esc+ and Sal+ mutants retain their arbutin+ phenotype, indicating that the mutations enhance the promiscuity of the enzyme. Sequencing data indicate that the first step Esc+ mutant carries a four base insertion within the promoter of the bglA gene that results in enhanced transcription of bglA. RT-PCR studies confirm that both the steady-state levels as well as the half-life of the bglA mRNA are enhanced in the mutant. This is further corroborated by the observation that overexpression of wild type bglA in the parent strain using a multicopy plasmid confers an Esc+ phenotype. The second step Sal+ mutant carries a point mutation within bglA ORF, a thymine to guanine transversion at position 583 (T583G) of the bglA gene, resulting in an amino acid change from cysteine to glycine at position 195 (C195G) of the BglA ORF close to the active site. Presence of a plasmid carrying the T583G mutation, introduced by site-directed mutagenesis, results in a Sal+ phenotype, confirming the role of the transversion in conferring the Sal+ phenotype. Based on docking studies, the positioning of salicin into the substrate binding site of the mutant BglA enzyme is different compared to wild type BglA due to the loss of stearic hindrance for the binding of salicin when C195 is replaced by the smaller amino acid glycine in the mutant protein. These observations indicate that under conditions of nutrient deprivation, exposure to novel substrates can result in the evolution of new metabolic capabilities by the sequential modification of a pre-existing genetic system. In the case of one novel substrate, the mutation results in the overexpression of the hydrolytic enzyme, while in the case of the second substrate, a mutation close to its active site increases its substrate specificity. Results presented in Chapter 3 specifically deal with the involvement of the bgl operon under low levels of oxygen. Earlier observations have shown that there is a 22 fold enhancement in the expression of the bgl operon under anaerobic condition. The present results provide evidence that bgl expression has a physiological role under low levels of oxygen and in addition suggest a possible mechanism for the overexpression of the bgl operon that involves the ArcAB two component system known to mediate regulation under microaerobic and static conditions. Transcription studies using a lacZ reporter fused to the wild type bgl promoter show that there is enhanced transcription from the bgl promoter under microaerobic and static conditions in the presence of arcA encoding the response regulator compared to that in its absence. The positive effect of arcA on the expression of the bgl operon is dispensable in the absence of H-NS since presence or absence of arcA does not change the expression of the bgl operon in an hns-null background, implying that the involvement of ArcA is via antagonizing H-NS. Competition experiments indicate that there is growth advantage associated with the activated allele of the bgl operon under low levels of oxygen since Bgl+ strains carrying the activated allele of the bgl operon as well as strains expressing BglG constitutively can out-compete wild-type strains. Presence of the wild type arcA allele results in a strong growth advantage compared to its absence under static conditions but not aerobic condition. The bgl operon seems to be one of the possible downstream targets of ArcA under static condition since absence of the bgl operon results in a modest reduction of the growth advantage (GASP) phenotype conferred by arcA. The up-regulation of the bgl operon is likely to enable the cells to scavenge available nutrients from their niche more efficiently. These experiments also show that the GASP phenotype associated with BglG constitutive strains under static conditions involves downstream genes that are different from oppA known to be one of the downstream targets during aerobic growth. It is possible that under low level of oxygen, the bgl operon is regulating a different set of downstream genes involving a different mechanism. In summary, the results of this investigation show that the aromatic β-glucoside catabolic systems in E. coli play a role in the generation of new metabolic capabilities via mutations in pre-existing genetic systems as well as through changes in gene expression patterns. The mechanisms outlined in this study are likely to be of broader significance applicable to microbial evolution under stress in general.
15

Physicochemical Characterization and Isoflavone Profiling of Sourdough Soy Bread

Yezbick, Gabrielle 30 August 2012 (has links)
No description available.
16

Metabolismo de alpha-metil glicosídio em Saccharomyces cerevisiae / Alpha-methyl glucoside metabolism in saccharomyces cerevisiae

Silva, Marcia Aparecida da 07 December 2007 (has links)
O transporte de &#945;-metil glicosídio ( &#945;-MG) em Saccharomyces cerevisiae foi recentemente reportado como transporte ativo, do tipo simporte de &$945;-MG com H+ mediado pela permease Agt1p. A cepa AP77-11B (cepa selecionada em nosso laboratório) 14C-&#945;-MG pelo mecanismo descrito como difusão facilitada porque não existe co-transporte de H+ durante o transporte de &#945;-MG. Os genes HXT1-HXT17 pertencem à família dos transportadores de hexoses em Saccharomyces cerevisiae. Então, nós decidimos investigar a possibilidade que o transporte de &#945;-MG poderia ser mediado pelos transportadores de hexoses. Nós demonstramos que cepa MC966A (tipo selvagem), KY73 (isogênica com MC966A mas deletada nos HXT1-7), BSY08 (isogênica com KY73 com o AGT1 deletado), BSY09 (isogênica com MC966A com o AGT1 deletado) e a EBY.VW4000 (hxt1-17 agt1 gal2-null), não cresceram em &#945;-MG como fonte de carbono. Além disso, estas cepas não transportaram &#945;-MG por difusão facilitada quando as células foram cultivadas em meio com maltose, levando-nos a concluir que os transportadores de hexoses não estavam envolvidos no transporte de &#945;-MG. Nós observamos que a cepa AP77-11B apresentou alta atividade de &#945;-metilglicosidase periplásmica quando as células foram cultivadas em &#945;-MG. Esta atividade enzimática foi ensaiada usando um método descrito primeiramente para invertase periplásmica, no qual as células eram incubadas com fluoreto de sódio, um inibidor da enolase, antes da incubação com &#945;-MG. Então, a glicose produzida durante a hidrólise do -MG poderia ser determinada. A atividade extracelular só está presente em células cultivadas em -&#945;MG. Células de-reprimidas não mostraram atividade de alpha-metilglicosidase. Os parâmetros cinéticos determinados para &#945;-metilglicosidase, indicaram que esta enzima tem baixa afinidade para o alpha-MG. Além do mais, a atividade específica da alpha-metilglicosidase periplásmica aumentou ao longo da curva de crescimento em &#945;-MG. Os resultados reportados mostraram que existem duas vias de utilização de &#945;-MG em Saccharomyces cerevisiae. Uma via é mediada pela Agt1p, responsável pelo transporte ativo de &#945;-MG. Na outra via, a &#945; -metilglicosidase é secretada para o espaço periplásmico das células. Então, a glicose produzida pela hidrólise do &#945;-MG é transportada pelos transportadores de hexoses por difusão facilitada. / Alpha-Methyl glucoside ( alpha-MG) transport in Saccharomyces cerevisiae was previously reported to be an active transport, a H+ -symport mediated by the Agt1p permease. Strain AP77-11B (a strain obtained in our laboratory) takes up 14C- alpha-MG by a mechanism which was ascribed to be facilitated diffusion since there is no H+-cotransport during the alpha-MG uptake. The HXT1-HXT17 there is no H genes belong to a family of hexose transporters in Saccharomyces cerevisiae. Therefore, we decided to investigate the possibility that -MG transport could be mediated by hexose transporters. We demonstrated that strains MC966A (w.t.), KY73 (isogenic to MC966A but hxt1-hxt7-null), BSY08 (isogenic to KY73 with AGT1 deleted), BSY09 (isogenic to MC966A with AGT1 deleted) and even strain EBY.VW4000 (hxt1-hxt17 agt1 gal2-null), were not able to grow on alpha-MG as the sole carbon source. Moreover, none of them presented alpha-MG transport by facilitated diffusion when the strains were grown on maltose leading us to conclude that the HXT glucose transporters were not involved in alpha-MG transport. We found that strain AP77-11B displayed a high periplasmic alpha-methylglucosidase activity when cells were grown on alpha-MG. This enzymatic activity was assayed using a method first described for periplasmic invertase in which cells were incubated with sodium fluoride, an inhibitor of enolase, prior to the incubation with alpha-MG. Then the glucose produced during alpha-MG hydrolysis could be accurately measured. The extracellular activity was present only in cells grown on alpha-MG. Glucose derepressed cells did not show periplasmic alpha-methylglucosidase activity.
17

Micotoxinas em gr?os de trigo: ocorr?ncia, efeitos da ozoniza??o e determina??o de uma forma modificada do desoxinivalenol / Mycotoxins in wheat grains: Occurrence, effects of ozonation and determination of a modified form of deoxynivalenol

Trombete, Felipe Machado 18 March 2016 (has links)
Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2017-01-04T11:32:19Z No. of bitstreams: 1 2016 - Felipe Machado Trombete.pdf: 1613295 bytes, checksum: 957f0b025def400e446f7c3176c76b4c (MD5) / Made available in DSpace on 2017-01-04T11:32:19Z (GMT). No. of bitstreams: 1 2016 - Felipe Machado Trombete.pdf: 1613295 bytes, checksum: 957f0b025def400e446f7c3176c76b4c (MD5) Previous issue date: 2016-03-18 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES / Mycotoxins are natural contaminants produced by filamentous fungi and they are widely present in food. In wheat grains, the presence of trichothecenes produced by Fusarium spp. and also aflatoxins, produced by Aspergillus spp. are a serious public health problem because they are toxic metabolites to man and animals that remain stable during the industrial processes to which wheat is subjected when manufacturing derived products. One way to reduce such contaminants is to use ozone (O3) in food processing. Due to its high potential as an oxidant, O3 may react with mycotoxins and reduce their toxicity due to molecular degradation. This research aimed to evaluate the effects of different conditions of ozonation on the i) reduction in mycotoxins levels (deoxynivalenol and total aflatoxins); ii): reduction in total fungal count; iii) the effects on chemical, mineral and technological profiles and; iv) the possible differences sensorial profile of the flour obtained from the ozonized grains. In a second phase of this project, a methodology for determination of D3G (deoxynivalenol-3-glucoside), a masked form of DON, using High Performance Liquid Chromatography with photodiode array detector (HPLC-PDA) was optimized and in-house validated. Results obtained from ozonation study showed that O3 reduced total fungal count in approximately 3.0 cycles log CFU/g of wheat grain and deoxynivalenol and total aflatoxins contamination up to 64.3% and 48.0%, respectively. The gaseous ozonation can be applied without negatively changing the chemical, technological and sensory characteristics of the grains and can be considered an excellent method for remediation of fungal and mycotoxin contaminations. Also, the method optimized and in-house validated for determination of D3G by HPLC-PDA showed adequate results and, it could be considered an alternative to mass spectrometry determination of D3G in wheat grains. / Micotoxinas s?o contaminantes naturais, produzidos por fungos filamentosos e, podem ocorrer em altos n?veis nos alimentos. Nos gr?os de trigo, a presen?a de tricotecenos, um grupo de micotoxinas produzidas por Fusarium spp. e, aflatoxinas, produzidas por Aspergillus spp., representam um importante problema de sa?de p?blica por serem t?xicas ao homem e animais e muito est?veis aos processos no qual o trigo ? submetido para obten??o de produtos industrializados. Uma forma de reduzir a contamina??o dos alimentos por micotoxinas ? atrav?s do uso do oz?nio (O3) no processamento do alimento. Devido ao alto potencial oxidante do O3, esse pode degradar as mol?culas das micotoxinas, tendo como consequ?ncia a elimina??o ou redu??o de seus efeitos t?xicos. Essa pesquisa teve como objetivos principais avaliar os efeitos de diferentes condi??es de ozoniza??o na i) redu??o de micotoxinas (desoxinivalenol e aflatoxinas) em gr?os de trigo; ii) redu??o nos n?veis de fungos filamentosos; iii) influ?ncia nos par?metros qu?micos, perfil de minerais e par?metros tecnol?gico dos gr?os e da farinha obtida ap?s o processamento e; iv) influ?ncia nas caracter?sticas sensoriais da farinha elaborada a partir dos gr?os ozonizados. Em uma segunda etapa do projeto, um m?todo para determina??o de uma forma modificada do desoxinivalenol (DON), o desoxinivalenol-3-glicos?deo (D3G) foi otimizada e validada intralaboratorialmente, utilizando cromatografia l?quida de alta efici?ncia com detector de arranjo de diodos (CLAE-DAD). Os resultados obtidos dos ensaios de ozoniza??o demonstraram que o O3, nas condi??es experimentais utilizadas, reduziu a contagem de fungos totais em cerca 3,0 logs UFC/g de gr?os e a contamina??o por desoxinivalenol e aflatoxinas totais em at? 64,3 % e 48,0 %, respectivamente. O processo de ozoniza??o n?o influenciou de modo negativo a qualidade qu?mica, tecnol?gica e sensorial dos gr?os de trigo, podendo ser utilizado como um excelente m?todo para remedia??o da contamina??o dos gr?os por fungos e micotoxinas. Resultados adequados tamb?m foram obtidos na valida??o do m?todo de determina??o de D3G por CLAE-DAD, demonstrando que o m?todo ? confi?vel para a determina??o dessa forma mascarada do DON em gr?os e trigo e, pode ser utilizado como um m?todo alternativo a espectrometria de massas para tal an?lise.
18

Synthèses éco-compatibles de nouveaux composés amphiphiles biosourcés à base sucre et leurs applications en tant que tensioactifs et antimicrobiens / Eco-compatible synthesis of new biosourced sugar-based amphiphile compounds and their applications as surfactants and antimicrobials

Gozlan, Charlotte 25 November 2014 (has links)
Les travaux de recherche décrits dans ce manuscrit s'inscrivent dans le cadre de la chimie verte et du développement durable qui visent notamment l'emploi de matières premières issues de ressources renouvelables et la mise au point de procédés éco-compatibles pour la préparation de nouveaux produits à visées alimentaire, domestique ou thérapeutique. Dans ce contexte, une nouvelle voie d'accès aux acétals et éthers de monosaccharides (sorbitane et glucopyranoside de méthyle) a été développée. La synthèse se divise en deux étapes avec une première réaction d'acétalisation ou de transacétalisation qui a permis de synthétiser une nouvelle gamme d'acétals de monosaccharide. Puis, une seconde étape d'hydrogénolyse des acétals en présence de palladium sur charbon et sous pression d'hydrogène a permis d'accéder aux monoéthers de sorbitane et glucopyranoside de méthyle. Par la suite, un procédé en une étape et l'utilisation d'un intermédiaire acétal à courte chaîne comme solubilisant des réactifs a permis d'améliorer les rendements et d'envisager un développement à l'échelle industrielle. Enfin, ces nouvelles molécules ont été évaluées en tant que tensioactifs, cristaux liquides et antimicrobiens et certaines ont montré des propriétés très intéressantes qui permettraient d'envisager des applications potentielles dans ces domaines / The research work described in this manuscript is based on the green chemistry concept and within the frame of sustainable development which involve the use of raw materials from renewable resources and the development of eco-compatible process for the preparation of new products for food-processing, domestic or therapeutic applications. In this context, a new access to monosaccharide acetals and ethers (sorbitan and methyl glucoside) has been developed. The synthetic process is divided in two steps with an acetalisation or a transacetalisation as first reaction which allows to synthesize a new class of monosaccharide acetals. Then, a second step of acetal hydrogenolysis with palladium on charcoal and under hydrogen pressure has permitted access to sorbitan and methyl glucoside monoethers. Then, a one-step process and the use of intermediary short alkyl chain acetal as solubilizing agent has permitted to increase the yield and to consider an industrial development. Finally, these new molecules have been evaluated as surfactants, liquid crystals and antimicrobials and some of them have exhibited very attractive properties which could lead to potential applications in these fields
19

Amphiphilic Molecules in Aqueous Solution

Persson, Gerd January 2003 (has links)
<p>The aim of this thesis was to investigate amphiphilic molecules in aqueous solution. The work was divided into two parts. In the first part the effects of different counterions on phase behavior was investigated, while the second part concerns the 1-monooleoyl-rac-glycerol (MO)/n-octyl-β-D-glucoside (OG)/2H2O-system. </p><p>The effects of mixing monovalent and divalent counterions were studied for two surfactant systems, sodium/calcium octyl sulfate, and piperidine/piperazine octanesulfonate. It was found that mixing monovalent and divalent counterions resulted in a large decrease in cmc already at very low fractions of the divalent counterion. Moreover, the degree of counterion binding for piperidine in the piperidine/piperazine octanesulfonate system was much higher than predicted, probably due to the larger hydrophobic moiety of piperidine.</p><p>The effects of hydrophobic counterions were studied for eight alkylpyridinium octanesulfonates (APOS). The results were discussed in terms of packing constraints. The anomalous behavior of the 2H2O quadrupolar splittings in the lamellar phases was explained by the presence of two or more binding sites at the lamellae surface. </p><p>The MO/OG/water system was studied in general and the MO-rich cubic phases in particular. When mixing MO and OG it was found that OG-rich structures (micelles, hexagonal and cubic phase of space group Ia3d) could solubilize quite large amounts of MO, while the MO-rich cubic structures where considerable less tolerant towards the addition of OG. The micelles in the OG-rich L1 phase were found to remain rather small and discrete in the larger part of the L1 phase area, but at low water concentration and high MO content a bicontinuous structure was indicated. Only small fractions of OG was necessary to convert the MO-rich cubic Pn3m structure to an Ia3d structure, and upon further addition of OG a lamellar (La) phase formed. Since the larger part of the phase diagram contains a lamellar structure (present either as a single La phase or as a dispersion of lamellar particles together with other phases), the conclusion was that introducing OG in the MO structures, forces the MO bilayer to become more flat. Upon heating the cubic phases, structures with more negative curvature were formed. The transformation between the cubic structures required very little energy, and this resulted in the appearance of additional peaks in the diffractograms.</p>
20

Amphiphilic Molecules in Aqueous Solution

Persson, Gerd January 2003 (has links)
The aim of this thesis was to investigate amphiphilic molecules in aqueous solution. The work was divided into two parts. In the first part the effects of different counterions on phase behavior was investigated, while the second part concerns the 1-monooleoyl-rac-glycerol (MO)/n-octyl-β-D-glucoside (OG)/2H2O-system. The effects of mixing monovalent and divalent counterions were studied for two surfactant systems, sodium/calcium octyl sulfate, and piperidine/piperazine octanesulfonate. It was found that mixing monovalent and divalent counterions resulted in a large decrease in cmc already at very low fractions of the divalent counterion. Moreover, the degree of counterion binding for piperidine in the piperidine/piperazine octanesulfonate system was much higher than predicted, probably due to the larger hydrophobic moiety of piperidine. The effects of hydrophobic counterions were studied for eight alkylpyridinium octanesulfonates (APOS). The results were discussed in terms of packing constraints. The anomalous behavior of the 2H2O quadrupolar splittings in the lamellar phases was explained by the presence of two or more binding sites at the lamellae surface. The MO/OG/water system was studied in general and the MO-rich cubic phases in particular. When mixing MO and OG it was found that OG-rich structures (micelles, hexagonal and cubic phase of space group Ia3d) could solubilize quite large amounts of MO, while the MO-rich cubic structures where considerable less tolerant towards the addition of OG. The micelles in the OG-rich L1 phase were found to remain rather small and discrete in the larger part of the L1 phase area, but at low water concentration and high MO content a bicontinuous structure was indicated. Only small fractions of OG was necessary to convert the MO-rich cubic Pn3m structure to an Ia3d structure, and upon further addition of OG a lamellar (La) phase formed. Since the larger part of the phase diagram contains a lamellar structure (present either as a single La phase or as a dispersion of lamellar particles together with other phases), the conclusion was that introducing OG in the MO structures, forces the MO bilayer to become more flat. Upon heating the cubic phases, structures with more negative curvature were formed. The transformation between the cubic structures required very little energy, and this resulted in the appearance of additional peaks in the diffractograms.

Page generated in 0.0311 seconds