• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 106
  • 17
  • 15
  • 8
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 215
  • 71
  • 32
  • 25
  • 25
  • 22
  • 19
  • 18
  • 17
  • 16
  • 15
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Liver specific Prox1 inactivation causes hepatic injury and glucose intolerance in mice / マウス肝臓特異的Prox1不活化は肝障害と耐糖能異常を引き起こす

Goto, Toshihiko 23 May 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20568号 / 医博第4253号 / 新制||医||1022(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 原田 浩, 教授 武藤 学, 教授 戸井 雅和 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
72

The Effects of 3-Phosphoglycerate and Other Metabolites on the Activation of AMP-Activated Protein Kinase by LKB1/STRAD/MO25

Ellingson, William John 10 July 2006 (has links) (PDF)
Skeletal muscle contraction results in the phosphorylation and activation of the AMP-activated protein kinase (AMPK) by an upstream kinase, AMPKK. The LKB1-STRAD-MO25 complex is the major AMPKK in skeletal muscle; however, LKB1-STRAD-MO25 activity is not increased by muscle contraction. This relationship suggests that phosphorylation of AMPK by LKB1-STRAD-MO25 during skeletal muscle contraction may be regulated by allosteric mechanisms. In this study we tested an array of metabolites including glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), fructose 1,6-bisphosphate (F1,6-P2), 3-phosphoglycerate (3PG), glucose-1-phosphate (G1P), glucose-1,6-bisphosphate (G1,6-P2), adenosine diphosphate (ADP), carnitine (Carn), acetyl-carnitine (Acarn), inosine monophosphate (IMP), inosine, and ammonia for allosteric regulation. We found that 3PG stimulated LKB1-STRAD-MO25 activity and allowed for increased AMPK phosphorylation. 3PG did not stimulate LKB1-STRAD-MO25 activity toward the peptide substrate LKB1tide. These results have identified 3PG as an AMPK-specific regulator of AMPK phosphorylation and activation by LKB1-STRAD-MO25.
73

Manipulating aktivated metabolism via mtorc1

von Hack Prestinary, Ivan 01 May 2013 (has links)
Although poorly understood, normal cells and cancerous cells of the same type exhibit different patterns of nutrient consumption, processing and utility of metabolic substrates. Differences in substrate uptake, preference, and alternately emphasized metabolic pathways offer opportunities for selective targeting of cancer versus stroma. This may be accomplished by using a sequential approach of nutrient deprivation and pharmaceutical perturbation of metabolic pathways to inhibit cellular proliferation. The purpose of this study was to investigate the effects of restricting glucose and glutamine concentrations, in vitro, to levels that resemble a potential human fasting state. The mammalian target of rapamycin (mTOR), a mediator of nutrient sensation, was then inhibited with rapamycin in the nutrient-restricted conditions. Because active Akt/mTOR is implicated in cancer cell pro-survival, the hypothesis is that pharmaceutical inhibition of active Akt/mTOR signaling in combination with the stress of restricted nutrient supply will be more effective than nutrient deprivation alone at disrupting metabolic processes to impair cancer cell proliferation and/or pro-survival mechanisms. Untreated and treated conditions were tested to determine if an additive or synergistic effect would result from a sequential insult of nutrient deprivation followed by inhibited mTORC1 signaling. The cell line used for this study was cultivated from a murine pancreatic intraepithelial neoplasia (PANIN) derived from a transgenic mouse with pancreatic tissue-specific expression of constitutively active Akt. The transgene of Akt, isoform 1, contains a myristoyl tag that facilitates co-localization of Akt to the plasma membrane, thereby promoting the activation of this signaling protein.; This aberrantly activated Akt represents a prosurvival condition observed in most cancers, and impacts metabolic balance with increased downstream signaling to metabolic sensors and regulators, including mTORC1. Several methods were used to evaluate changes in metabolic and physiological response to nutrient deprivation and mTORC1 inhibition. These included tetrazolium reduction/absorbance readings to qualitatively evaluate differences in cell proliferation, and Western immunoblots for observing changes in protein expression and phosphorylation. ATP luminescence assays were applied to quantify intracellular ATP content, and citrate synthase spectrophotometry used to quantify specific activity/indicate changes in the TCA/OXPHOS production of ATP. Results from the above methods suggest that, individually, nutrient deprivation and rapamycin treatment share some similar effects on metabolically-related protein phosphorylation and in reducing cellular proliferation. Collectively, nutrient deprivation plus rapamycin treatment, however, resulted in unanticipated metabolic alterations under conditions used for this study, the complexities of which would need to be delineated in future studies.
74

Bioenergetic Abnormalities in Schizophrenia

Sullivan, Courtney R. 26 July 2018 (has links)
No description available.
75

FOXO3a Regulates Glycolysis via Transcriptional Control of Tumor Suppressor TSC1

Khatri, Shikha 01 November 2010 (has links)
No description available.
76

GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE: A NEW MOLECULAR TARGET IN CHEMOTHERAPY

Phadke, Manali January 2012 (has links)
Cancer therapy traditionally seeks to achieve complete tumor eradication via induction of cancer cell death by chemotherapeutic agents or radiation. An alternative strategy is to induce cytostasis, i.e. to arrest proliferation of cancer cells, perhaps in parallel with conventional chemotherapy. Such an alternative strategy could provide prolonged survival with less severe consequences of cytotoxic agents. To be truly effective, a chemotherapeutic drug should exert its action on biochemical targets specific for neoplastic cells while leaving the normal cells unaffected. Therefore, the knowledge of tumor cell-specific biochemical and signaling pathways is a pre-requisite for development of new, prospective anticancer drugs. In this study, we concentrated on the energy metabolism which is remarkably different in tumor and healthy cells. Cancer cells generate ATP mainly through the glycolytic pathway, and depend far less on oxidative phosphorylation (the Warburg effect). The way cancer cells generate energy reflects their need for energy as well as building blocks required for fast biosynthesis. Glycolysis, in contrast to oxidative phosphorylation, enhances biosynthetic pathways thus accelerating progression of tumor cells through the cell cycle. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) occupies a central position in the glycolytic pathway thus playing a critical role in the energy metabolism of cancer cells. Along with its enzymatic activity, GAPDH is a multifunctional protein which acts as a signaling and regulatory molecule in several cellular mechanisms. Based on the fact that glycolysis plays a pivotal role in survival of cancer cells, we hypothesized that down-regulation of GAPDH protein would alter the cancer cell proliferation, and cellular sensitivity of cancer cells to chemotherapy. The goal of this study was to evaluate GAPDH as a potential molecular target for treatment of cancer. In this project, our aims were: 1) To determine the effect of GAPDH level on cell proliferation and cell cycle progression of human carcinoma cells; 2) To elucidate the molecular mechanism(s) causing proliferation arrest in GAPDH-depleted cells; 3) To identify the chemotherapeutic agents exhibiting cytotoxic effect against non-dividing, senescent cells; 4) To analyze molecular dynamics of nuclear GAPDH and its mutant variants in the context of chemotherapy-induced stress. Towards these aims, we developed an experimental model where the level of GAPDH in human carcinoma cells was modulated by RNA interference (RNAi) technology. In vitro experiments were performed in this model system to evaluate the energy status, and signaling pathways in cancer cells after GAPDH depletion. Human carcinoma isogenic cell lines with different levels of GAPDH protein were analyzed for the sensitivity to various chemotherapeutic agents. Using site-mutagenesis, we prepared mutated variants of GAPDH and estimated their enzymatic activity. We also prepared constructs where GAPDH cDNA was fused with green fluorescent protein (EGFP) cDNA, and transiently expressed them in human cancer cells, to assess GAPDH localization and biological effects. We analyzed intranuclear localization and dynamic characteristics of GAPDH and its variants in the live cells using image confocal technologies (e.g. FRAP). In our study, we demonstrated that GAPDH is a molecular target with clinical potential for senescence-based tumor suppression. Our experiments revealed that depletion of GAPDH induces energy crisis and proliferation arrest in human carcinoma cells. We elucidated the molecular mechanisms initiated by GAPDH depletion, and demonstrated that GAPDH-depleted cells acquire the accelerated senescence phenotype. Moreover, we found chemotherapeutic agents cytotoxic to the senescent cells, a finding that opens a way to combination chemotherapy with therapy-induced senescence agents. Our results on dynamic characteristics of intranuclear GAPDH and its mutant forms indicate that in the nucleus, GAPDH interacts with biomolecules yet to be identified. The results of this study suggest a novel, prospective molecular target for pharmacotherapeutic intervention in cancer management. / Pharmaceutical Sciences
77

Impacts of metabolic stress-induced malnutrition and oxidative stress on biochemical changes in the slow- and fast-twitch skeletal muscles of rats

He, Ying, 1972 Apr. 20- January 2001 (has links)
No description available.
78

The Effects of Cell Culture Oxygen Levels on the Replicative Senescence Processes of Primary Human Fibroblasts

Stab II, Bernd Robert 24 August 2009 (has links)
Serial passaging of primary human fibroblasts leads to the formation of non-dividing senescent cells by a process termed replicative senescence. This tissue culture-based methodology is currently used as a model system to determine the underlying mechanisms of in vivo cellular aging and tumor suppression. Senescence is regarded as an alternative pathway to apoptosis, where cells undergo multiple changes in metabolic and cellular signaling pathways in order to prevent proliferation but still maintain a metabolically-active cell. Whether or not this model accurately reflects in vivo processes is presently controversial; however, replicative senescence is currently the most applicable model through which one can investigate the underlying causes of human cellular aging in the context of controlled environmental stress over time. This work was directed at understanding the molecular processes involved in replicative senescence with specific emphasis on the role of the mitochondria. A series of experiments were performed to assess changes during the induction of replicative senescence under conditions of low (3%) and high (20%) oxygen levels. Measurements were made at the transcriptional, protein, and metabolite levels. Microscopy wasalso utilized to monitor changes in mitochondrial morphology and volume. While previous studies have evaluated specific pathways and/or products; this work combines a more complete metabolomic, genomic, proteomic, and morphological picture of cells undergoing senescence and oxidative stress. Considering the low cell population densities of primary adherent fibroblasts and the subsequent low concentrations of small polar metabolites involved in glycolysis and the TCA cycle, methodologies needed to be developed in order to optimize metabolite extraction and liquid chromatography-mass spectrometric analysis. Protein kinase and transcriptional microarrays were also performed in order to quantify the changes in activated/deactivated signaling cascades as well as gene expression and relate these findings to metabolomic data. Mitochondrial dynamics of cells at different age time points and under different oxygen conditions were also assessed including mitochondrial size, shape, membrane potential, and percent volume per cell volume using confocal microscopy. The results obtained not only confirm the major pathways involved in senescence (p53/p21, PTEN/p27, and RTK/Raf/MAPK) but also provide evidence at both the transcriptional and protein levels for additional senescence-associated pathways. The majority of the changes observed were related to pathways involved in cellular stress, cell cycle control, and the survival response. Metabolic data suggested a –pooling effect– of glycolysis and TCA precursor molecules due to attenuation in enzyme function; this theory was also supported by an observed up regulation of gene expression as a compensatory mechanism. Mitochondria exhibited changes in membrane potential as well as volume and percent volume per cell which suggested compensatory hypertrophy and/or attenuation of mitochondrial fission processes. When the aforementioned analyses are tied together, a “theoretical model of senescence” can be formulated and is characterized by increased metabolic protein and associated metabolite levels due to attenuation in their respective enzyme function, resulting in increases in expression of their associated genes as a compensatory mechanism. / Ph. D.
79

Effect of Metabolic Enzymes on Amylopectin Content and Infectivity of Cryptosporidium parvum

Hartman, Angela Danielle 09 December 2006 (has links)
Amylopectin granules in Apicomplexan protozoa are hypothesized to be used as an energy source to aid the parasites in surviving in the environment allow latent stages to excyst and release infective stages, allow them to be mobile, invade host cells, and to continue their life cycle. The objective of this project was to determine if parasite glycolytic enzymes: alpha-amylase, amyloglucosidase, enolase, lactate dehydrogenase, and phosphorylase could be used to decrease amylopectin stores and subsequently infectivity of Cryptosporidium parvum oocysts/sporozoites in both fresh oocysts and stored oocysts. In addition, glycolytic enzymes and substrates: glucose, glucose-1-phosphate, and glycogen synthase were investigated to determine if they can be used to increase amylopectin stores and thus increase infectivity to aid in detection/storage of oocysts. Oocysts of Cryptosporidium parvum were suspended in 1mg/ml glycolytic enzymes or substrates (except glucose - 0.05M and glycogen synthase - 1U/ml) and electroporated. Oocysts were incubated at 37&#176;C for one hour to allow treatments to react with amylopectin followed by incubation on HCT-8 cells for 24 hours for infection. Real-time PCR and immunohistochemistry were performed to determine the effect of the enzymes on infectivity. An amylopectin assay and excystation assay was performed to determine if the enzymes degraded amylopectin and if decreased amylopectin reduced excystation. Alpha amylase and amyloglucosidase had the greatest impact on reducing both amylopectin and infectivity of fresh oocysts with reductions of 99.5% and 99.1% in infective oocysts, respectively (P<0.05). These results suggest that amylopectin may be an important factor in infection, although further research is needed. In stored oocysts, enzymes significantly reduced amylopectin content but not infectivity. In fresh oocysts, amylopectin content was correlated to excystation and infectivity with a decrease in amylopectin correlating to decreased excystation and infectivity. In contrast, there was no direct correlation for stored oocysts. When glucose, glucose-1-phosphate, or glycogen synthase was used to increase infectivity, results show that glycogen synthase had little effect, but glucose and glucose-1-phosphate significantly increased amylopectin content, excystation, and infectivity. In conclusion, amylopectin may be an important polysaccharide store of Cryptosporidium parasites to cause infection by allowing excystation of the oocysts to release infective sporozoites. / Ph. D.
80

Comparative cross-species analysis of detailed kinetic models of glycolysis

Du Preez, Franco B. 12 1900 (has links)
Thesis (PhD (Biochemistry))--University of Stellenbosch, 2009. / ENGLISH ABSTRACT: With the recent advances in the field of molecular biology, there is an increased need to integrate data on the various constituents of the cell in kinetic models that can predict and describe cellular behavior. When working towards a description of the entire cell using such kinetic models, the question arises: How do we compare different models for a given biological network? This is the central question addressed in my thesis and I developed and applied mathematical and computational methods for comparing dozens of existing models of erythrocyte and yeast glycolysis. To compare the steady-state behavior in models of erythrocyte glycolysis, I focussed on the function of the pathway, which is to supply the cell with Gibbs-free energy (γ- phosphate of ATP). I used supply-demand analysis in the framework of metabolic control analysis to make this comparison, which revealed that the ATP concentrations were homeostatically buffered at varying supply rates. I also applied this approach to compare steady-state behavior in models of yeast glycolysis, finding that they were not necessarily optimized for homeostatic maintenance of the ATP concentration and that in models for this organism the rate of ATP production is often determined by the supply reactions of glycolysis. In addition, I tested whether a kinetic model can describe novel behavior if it is adjusted to conditions different from those for which the model was originally constructed. More specifically, using a model of steady-state yeast glycolysis, I showed that small adjustments to the original enzyme concentrations are enough to obtain an oscillating model, which shows a remarkable resemblance to the experimentally observed oscillations. Importantly, some of these enzyme concentrations changes are known to occur during the pre-treatment of the cells which is necessary to obtain oscillatory behavior. To the best of my knowledge, the resulting model is the first detailed kinetic model that describes the experimentally observed strong synchronization of glycolytic oscillations in yeast populations. To analyze the dynamic behavior of yeast glycolytic models and to compare different models in terms of dynamics, I introduced a framework used in physics and engineering to create a vector based, two dimensional graphical representation of the oscillating metabolites and reactions of glycolysis. Not only was it possible to make a concise comparison of the set of models, but with the method I could also quantify the contribution of the interactions in the network to the transduction of the oscillations. Furthermore I could distinguish between different mechanisms of oscillation for each of the models, and demonstrated how the framework can be used to create such representations for experimental data sets. / AFRIKAANSE OPSOMMING: Met die onlangse vooruitgang in die veld van molekulere biologie, is daar ?n toenemende behoefte om data rakende die verskeie komponente van die sel in kinetiese modelle te integreer, om sodanig selgedrag te voorspel en te beskryf. As daar gepoog word om ’n beskrywing van die sel as geheel te verkry d.m.v. sulke kinetiese modelle, onstaan die vraag: Hoe vergelyk ons verskillende modelle van ’n gegewe biologiese netwerk? Dit is die sentrale vraag wat my tesis aanspreek en ek het wiskundige en numeriese metodes ontwikkel en toegepas om talle bestaande modelle van gis- en eritrosietglikolise te vergelyk. Om die bestendige-toestand gedrag in modelle van eritrosietglikolise te vergelyk, het ek gefokus op die funksie van die padweg, naamlik om die sel met Gibbs-vrye energie (γ-fosfaat van ATP) te voorsien. Ek het vraag-aanbod analiese in die raamwerk van metaboliese kontrole analiese gebruik om hierdie vergelyking te maak, wat getoon het dat die ATP konsentrasies homeostaties gebuffer was by verskillende aanbod tempos. Ek het ook hierdie aanpak gebruik om die bestendige-toestand gedrag in modelle van gisglikolise te vergelyk, en het bevind dat hulle nie noodwendig geoptimiseer is om ?n homeostatiese balans in die ATP konsentrasie te handhaaf nie, en dat in modelle vir hierdie organisme, die tempo van ATP produksie dikwels bepaal word deur die aanbod reaksies van glikoliese. Ek het verder ook bepaal of so ?n kinetiese model nuwe soorte gedrag kan beskryf, as dit aangepas word aan omstandighede wat verskil van dié waarvoor die model oorspronklik gekonstrueer was. Meer spesifiek, deur ?n model van bestendige-toestand gisglikolise te gebruik, kon ek wys dat klein veranderinge aan die oorspronkline ensiem konsentrasies genoeg was om ?n ossilerende model te verkry, wat opmerklik ooreenstem met die eksperimenteel waargenome ossilasies. Let ook daarop dat sommige van hierdie ensiem konsentrasie veranderinge plaasvind tydens die voorafbehandeling van die selle, wat essensieel is om die ossilasies waar te neem. Tot die beste van my kennis is die model wat ek met hierdie prosedures verkry het, die eerste gedetaileerde kinetiese model wat die eksperimenteel waargenome sterk sinkronisasie in ossilerende gis populasies voorspel. Om gis glikolitiese modelle te vergelyk in terme van hul dinamiese gedrag, het ek ?n raamwerk wat in fisika en ingeneurswese gebruik word, ingespan om ?n vektor-gebasseerde, twee dimensionele grafiese voorstelling van die ossilerende metaboliete en reaksies te maak. Hierdie raamwerk het dit nie net moontlik gemaak om ?n kompakte vergelyking van ?n stel modelle te maak nie, maar ek kon ook die bydrae van interaksies in die netwerk tot transduksie van die ossilasies kwantifiseer. Ek kon verder onderskeid tref tussen die verskillende ossilasiemeganismes vir elk van die modelle, en het ook gedemonstreer hoe die raamwerk gebruik kan word om sulke voorstellings vir eksperimentele datastelle te skep.

Page generated in 0.0779 seconds