Spelling suggestions: "subject:"glycosaminoglycans mimetic""
1 |
Probing Allosteric, Partial Inhibition of Thrombin Using Novel AnticoagulantsVerespy, Stephen S, III 01 January 2016 (has links)
Thrombin is the key protease that regulates hemostasis; the delicate balance between procoagulation and anticoagulation of blood. In clotting disorders, like deep vein thrombosis or pulmonary embolism, procoagulation is up-regulated, but propagation of clotting can be inhibited with drugs targeting the proteases involved, like thrombin. Such drugs however, have serious side effects (e.g., excessive bleeding) and some require monitoring during the course of treatment. The reason for these side effects is the mechanism by which the drugs’ act. The two major mechanisms are direct orthosteric and indirect allosteric inhibition, which will completely abolish the protease’s activity. Herein we sought an alternative mechanism called allosteric, partial inhibition, that has shown promise to truly regulate coagulation. Partial inhibition through allosteric mechanisms are well described for membrane-bound and oligomeric proteins. However proteases, specifically monomeric proteases (i.e., thrombin), have not shown this phenomenon until now. A small library of coumarin-based sulfated allosteric modulators (CSAMs) was synthesized to target a surface region called exosite 2; mainly composed of highly positively charged residues surrounded by hydrophobic patches. Studies revealed a non-competitive mechanism of binding with a range of IC50s between 0.2-58 µM combined with inhibitory efficacies (ΔY) between 22-73%; indicative of allosteric, partial inhibition. The KD was determined for the most potent compound (3g; IC50 = 0.2 µM, ΔY = 47%) at 0.15 µM. 3g was observed to bind at exosite 2 through unfractionated heparin competition and thrombin mutant studies. Additional computational studies were in agreement with the mutant and competition studies, showing the sulfate of 3g binding within a pocket containing R126 and R233. Fluorescence quenching and antithrombin inactivation rate studies described a conformational change to thrombin’s active site in the presence of 3g, supporting reduction of thrombin’s catalytic efficiency, without complete inhibition of thrombin’s proteolytic activities. Coupled enzyme assays and gel electrophoresis showed that in the presence of 3g, hydrolysis of fibrinogen (IC50 = 0.51 µM, ΔY = 94%) and protein C activation (IC50 = 1.7 µM, ΔY = 91%) is fully inhibited. Alternatively, FXIII activation was shown to be only partially inhibited by the presence of 3g, and FXI activation did not show any significant activation or inhibition. 3g was also shown to be active in human plasma and whole blood, but requiring much higher concentrations to induce an anticoagulant effect. Mice studies looking at the effects of 3g in vivo showed that even at high concentrations, showed no abnormal bleeding or any other irregularities. This work highlights a novel occurrence regarding thrombin’s allosteric functionality against multiple endogenous substrates. This library of compounds may be useful in the future development of allosteric inhibitors and probes that pose little to no risk of bleeding events by inducing partial inhibition.
|
2 |
Inhibition of Cancer Stem Cells by Glycosaminoglycan MimeticsO'Hara, Connor P 01 January 2019 (has links)
Connor O’Hara July 29, 2019
Inhibition of Cancer Stem Cells by Glycosaminoglycan Mimetics
In the United States cancer is the second leading cause of death, with colorectal cancer (CRC) being the third deadliest cancer and expected to cause over 51,000 fatalities in 2019 alone.1 The current standard of care for CRC depends largely on the staging, location, and presence of metastasis.2 As the tumor grows and invades nearby lymph tissue and blood vessels, CRC has the opportunity to invade not only nearby tissue but also metastasize into the liver and lung (most commonly).3 The 5-year survival rate for metastasized CRC is <15%, and standard of care chemotherapy regimens utilizing combination treatments only marginally improve survival.3-5 Additionally, patients who have gone into remission from late-stage CRC have a high risk of recurrence despite advances in treatment.6-7
The Cancer Stem-like Cell (CSC) paradigm has grown over the last 20 years to become a unifying hypothesis to support the growth and relapse of tumors previously regressed from chemotherapy (Figure 1).8 The paradigm emphasizes the heterogeneity of a tumor and its microenvironment, proposing that a small subset of cells in the tumor are the source of tumorigenesis with features akin to normal stem cells.9 The CSCs normally in a quiescent state survive this chemotherapy and “seed” tumor redevelopment.10 First observed in acute myeloid lymphoma models, CSCs have since been identified in various other cancers (to include CRC) by their cell surface antigens and unique properties characterizing them from normal cancer cells.11-12 These include tumor initiation, limitless self-renewal capacity to generate clonal daughter cells, as well as phenotypically diverse, mature, and highly differentiated progeny.13-14
Previously our lab has identified a novel molecule called G2.2 (Figure 2) from a unique library of sulfated compounds showing selective and potent inhibition of colorectal CSCs in-vitro.15 G2.2 is a mimetic of glycosaminoglycans (GAGs) and belongs to a class of molecules called non-saccharide GAG mimetics (NSGMs). Using a novel dual-screening platform, comparisons were made on the potency of G2.2 in bulk monolayer cells, primary 3D tumor spheroids of the same cell line, and subsequent generations of tumor spheroids. This work has shown in-vitro the fold-enhancement of CSCs when culturing as 3D tumor spheroids. Spheroid culture serves as a more accurate model for the physiological conditions of a tumor, as well as the functional importance of upregulating CSCs. Evaluation of G2.2 and other NSGMs was performed in only a few cell lines, developing a need to better understand the ability of G2.2 to inhibit spheroids from a more diverse panel of cancer cells to better understand G2.2’s mechanism.
The last few decades have seen the advancement in fundamental biological and biochemical knowledge of tumor cell biology and genetics.16 CRC, in particular, has served as a useful preclinical model in recapitulating patient tumor heterogeneity in-vitro.17 Recent work has characterized the molecular phenotypes of CRC cell lines in a multi-omics analysis, stratifying them into 4 clinically robust and relevant consensus molecular subtypes (CMS).18-19 Our work was directed to screen a panel of cells from each of the molecular subtypes and characterize the action of G2.2 and 2nd generation lipid-modified analogs, synthesized to improve the pharmacokinetic properties of the parent compound. Four NSGMs, namely G2.2, G2C, G5C, and G8C (Figure 2) were studied for their ability to inhibit the growth of primary spheroids across a phenotypically diverse panel.
Compound
HT-29 IC50 (μM)
Panel Average IC50 (μM)
G2.2
28 ± 1
185 ± 55
G2C
5 ± 2
16 ± 15
G5C
8 ± 2
63 ± 19
G8C
0.7 ± 0.2
6 ± 3
Primary spheroid inhibition assays were performed comparing the potency of new NSGMs to G2.2. Fifteen cell lines were evaluated in a panel of colorectal adenocarcinoma cell lines with several cell lines representing each CMS. Primary spheroid inhibition assays revealed 3 distinct response with regard to G2.2’s ability to inhibit spheroid growth. Cells from CMS 3 and 4, which display poor clinical prognosis, metabolic dysregulation, and enhanced activation of CSC pathways, showed the most sensitivity to G2.2 (mean IC50 = 89 ± 55 μM). Mesenchymal CMS 4 cell lines were over 3-fold more sensitive to treatment with G2.2 when compared to CMS 1 cell lines. Resistant cell lines were composed entirely of CMS 1 and 2 (mean IC50 = 267 ± 105 μM). In contrast, all lipid-modified analogs showed greater potency than the parent NSGM in almost every CRC cell line. Of the three analogs, G8C showed the greatest potency with a mean IC50 of less than 15 μM. Of the CRC spheroids studied, HT-29 (CMS 3) was most sensitive to G8C (IC50 = 0.73 μM).
To evaluate the selectivity of NSGMs for CSC spheroid inhibition, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) cytotoxicity assays were performed on monolayer cell culture, and the fold-selectivity of NSGM for spheroids was analyzed. Data shows that NSGMs preferentially target CSC-rich spheroids compared with monolayer cellular growth, with G2.2 having over 7-fold selectivity for spheroid conditions. This fold selectivity was enhanced in CMS 3/4, supporting the idea that G2.2 targets a mesenchymal and stem-like phenotype. To further validate this selectivity, limiting dilution assays were performed across the panel to determine the tumor-initiating capacity of each cell line. Cell lines which showed a sensitive response to G2.2 were over 2-fold more likely to develop into spheroids, validating the previous hypothesis. Further characterization was performed analyzing the changes G2.2 induced on CSC markers, as well as the basal expression of a unique pair of cancer cells. Western blots showed a reduction in self-renewal marker across all CMS after treatment with G2.2, and that cell lines sensitive to G2.2-treatment overexpress mesenchymal and stem-like markers. G2.2-resistant cell lines show an epithelial phenotype, lacking this expression.
The positive results observed in these studies enhance the understanding of G2.2 and analogs, and further evaluation with additional cell lines of various tissues would improve the knowledge thus far gained. However, all experiments described take valuable time to perform and analyze. Thus, there became a need to develop a high-throughput screening (HTS) platform for our assays that standardized analysis and enhanced productivity. Initial development of the method for this assay are underway, and recent evidence from these evaluations of breast cancer spheroids suggests that G2.2 and analogs may be tissue-specific compounds for the treatment of cancer. Future work entails refining the application of this method for evaluation of the NCI-60 (National Cancer Institute) tumor cell panel.
Overall, these results make several suggestions concerning the NSGMs evaluated against the panel. First, G2.2 selectively targets CSCs with limited toxicity to monolayer cells of the same cell line. Further, G2.2 has the greatest potency with CMS 3/4, whose mesenchymal phenotypes are associated with poor clinical prognosis and enrichment of CSCs. Supporting evidence include that sensitive cell lines are highly tumorigenic and show enhanced expression of mesenchymal/CSC markers compared to resistant cell lines. Lipid-modification of G2.2 enhances in-vitro potency against spheroid growth, with nM potency reached in the most sensitive cell lines. Evidence in the development of a HTS platform also suggests these NSGMs show tissue specificity to cancers of the intestine. Further work characterizing the mechanism of NSGMs in a broader multi-tissue panel will enhance our understanding of the compounds as a potential therapy to dramatically improve patient survival through specific targeting of tumorigenesis.
References
1. Colorectal Cancer Facts & Figures 2017-2019. American Cancer Society 2017.
2. Compton, C. C.; Byrd, D. R.; Garcia-Aguilar, J.; Kurtzman, S. H.; Olawaiye, A.; Washington, M. K. Colon and rectum. In AJCC Cancer Staging Atlas, 2nd ed.; Ed. Springer Science: New York, 2012; pp 185–201.
3. Van Cutsem, E.; Cervantes, A.; Adam, R.; Sobrero, A.; Van Krieken, J. H.; Aderka, D.; Aranda Aguilar, E.; Bardelli, A.; Benson, A.; Bodoky, G.; et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 2016, 27, 1386–422.
4. Siegel, R. L.; Miller, K. D.; Fedewa, S. A.; Ahnen, D. J.; Meester, R. G. S.; Barzi, A.; Jemal, A. Colorectal cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 177–193.
5. Moriarity, A.; O'Sullivan, J.; Kennedy, J.; Mehigan, B.; McCormick, P. Current targeted therapies in the treatment of advanced colorectal cancer: a review. Ther. Adv. Med. Oncol. 2016, 8, 276–293.
6. Seidel, J.; Farber, E.; Baumbach, R.; Cordruwisch, W.; Bohmler, U.; Feyerabend, B.; Faiss, S. Complication and local recurrence rate after endoscopic resection of large high-risk colorectal adenomas of >/=3 cm in size.
Int. J. Colorectal Dis. 2016, 31, 603–611.
7. Pugh, S. A.; Shinkins, B.; Fuller, A.; Mellor, J.; Mant, D.; Primrose, J. N. Site and stage of colorectal cancer influence the likelihood and distribution of disease recurrence and postrecurrence survival: data from the FACS randomized controlled trial. Ann. Surg. 2016, 263, 1143–1147.
8. Batlle, E.; Clevers, H. Cancer stem cells revisited. Nat. Med. 2017, 23, 1124–1134.
9. Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 2011, 144, 646–674.
10. Tirino, V.; Desiderio, V.; Paino, F.; De Rosa, A.; Papaccio, F.; La Noce, M.; Laino, L.; De Francesco, F.; Papaccio, G. Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB J. 2013, 27, 13–24.
11. Bonnet, D.; Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 1997, 3, 730–737.
12. Desai, A.; Yan, Y.; Gerson, S. L. Concise reviews: cancer stem cell targeted therapies: toward clinical success. Stem Cells Transl. Med. 2019, 8, 75–81.
13. Munro, M. J.; Wickremesekera, S. K.; Peng, L.; Tan, S. T.; Itinteang, T. Cancer stem cells in colorectal cancer: a review. J. Clin. Pathol. 2018, 71, 110–116.
14. Zhou, Y.; Xia, L.; Wang, H.; Oyang, L.; Su, M.; Liu, Q.; Lin, J.; Tan, S.; Tian, Y.; Liao, Q.; Cao, D. Cancer stem cells in progression of colorectal cancer. Oncotarget 2018, 9, 33403–33415.
15. Patel, N. J.; Karuturi, R.; Al-Horani, R. A.; Baranwal, S.; Patel, J.; Desai, U. R.; Patel, B. B. Synthetic, non-saccharide, glycosaminoglycan mimetics selectively target colon cancer stem cells. ACS Chem. Biol. 2014, 9, 1826–1833.
16. Punt, C. J.; Koopman, M.; Vermeulen, L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat. Rev. Clin. Oncol. 2017, 14, 235–246.
17. Mouradov, D.; Sloggett, C.; Jorissen, R. N.; Love, C. G.; Li, S.; Burgess, A. W.; Arango, D.; Strausberg, R. L.; Buchanan, D.; Wormald, S.; et al. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res. 2014, 74, 3238–3247.
18. Guinney, J.; Dienstmann, R.; Wang, X.; de Reynies, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015, 21, 1350–1356.
19. Berg, K. C. G.; Eide, P. W.; Eilertsen, I. A.; Johannessen, B.; Bruun, J.; Danielsen, S. A.; Bjornslett, M.; Meza-Zepeda, L. A.; Eknaes, M.; Lind, G. E.; et al. Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies. Mol. Cancer 2017, 16, 116–132.
|
Page generated in 0.1184 seconds