• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1534
  • 298
  • 199
  • 166
  • 109
  • 66
  • 38
  • 32
  • 22
  • 21
  • 20
  • 17
  • 17
  • 17
  • 17
  • Tagged with
  • 3091
  • 665
  • 333
  • 307
  • 270
  • 266
  • 220
  • 177
  • 174
  • 164
  • 155
  • 143
  • 142
  • 139
  • 132
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1021

Volcanic framework and geochemical evolution of the Archean Hope Bay Greenstone Belt, Nunavut, Canada

Shannon, Andrew J. 05 1900 (has links)
Part of the Slave Structural Province, the Hope Bay Greenstone Belt is a 82 km long north-striking sequence of supracrustal rocks dominated by mafic volcanic rocks with lesser felsic volcanic and sedimentary rocks. Mapping of two transects in the southern section and two transects in the northern section have contributed to a robust stratigraphic framework the belt. Three recently discovered Archean lode gold deposits in the Hope Bay Greenstone belt have associations with major structures and specific lithologies (Fe-Ti enriched basalts). The Flake Lake and the Clover Transects are in the southern part of the belt and the Wolverine and Doris-Discovery Transects are in the northern part of the belt. This work subdivides the volcanic rocks into distinct suites based upon field, petrologic, geochemical, and geochronologic criteria. Some of the suites are stratigraphically continuous and can be correlated tens of kilometres along strike thereby linking the two parts of the Hope Bay Greenstone Belt. U-Pb geochronology supports work by Hebel (1999) concluded that virtually all the supracrustal rocks in the Hope Bay Greenstone Belt were deposited over at least 53 m.y. (2716-2663 Ma), with the majority of the volcanism occurring after 2700 Ma. A number of basalt groups are identified and include the normal basalt, the LREE-enriched basalt, the Ti-enriched basalt and the Ti-enriched Al-depleted basalt groups. They have chemical signatures that vary in trace elements particularly HFSE and REE’s, and can be easily be distinguished by geochemical screening. The felsic volcanic suites are also divided into three main groups, tholeiitic rhyolite, calc-alkaline dacite and calc-alkaline rhyolite groups. Nd and Hf isotope signatures are consistent with trace element signatures in identifying mafic and felsic volcanic groups, with the tholeiitic rhyolite showing highly variable signature. The Hope Bay Greenstone Belt has been show to have a number of felsic and volcanic cycles. An early construction phase of the belt is made up of primarily mafic volcanics which is followed by felsic volcanism equalled mafic volcanism which lacks basalts enriched in Ti. The geodynamic environment that created the Hope Bay Greenstone Belt can be explained by plume influenced subduction zone.
1022

Structural controls on gold - quartz vein mineralisation in the Otago schist, New Zealand

Scott, John G., n/a January 2006 (has links)
Hydrothermal fluid flow is spatially and genetically associated with deformation in the earth�s crust. In the Otago Schist, New Zealand, the circulation of hydrothermal fluids in the Cretaceous formed numerous mesothermal gold-quartz vein deposits. Otago schist rocks are largely L-S tectonites in which the penetrative fabric is the product of more than one deformation phase/transposition cycle. Regional correlation of deformation events allowed mineralised deposits to be related to the structural evolution of the Otago Schist. Compilation of a detailed tectonostratigraphy of New Zealand basement rocks reveals that extensional mineralisation correlates with the onset of localised terrestrial fanglomerate deposition, thermal perturbation and granitic intrusion that mark the beginning of New Zealand rifting from the Antarctic portion of Gondwana. Laminated and breccia textures in mineralised veins suggest that host structures have experienced repeated episodes of incremental slip and hydrothermal fluid flow. However, analysis of vein orientation data in terms of fault reactivation theory (Amontons Law) shows that most deposits contain veins that are unfavourably oriented for frictional reactivation. Repeated movement on unfavourably oriented structures may involve dynamic processes of strain refraction due to competency contrasts, the effect of anisotropy in the schist, or localised stress field rotation. Deposits have been classified on the basis of host structure kinematics at the time of mineralisation into low angle thrust faults, and high angle extensional fault - fracture arrays. Low angle deposits have a mapped internal geometry that is very different from conventional imbricate thrust systems. This study applied ⁴⁰Ar/�⁹Ar geochronology to selected deposits and has identified at least three distinct mineralisation events have occurred within the central axial belt during the Cretaceous. Relationships between radiometric apparent age and inferred crustal depth reveal that after metamorphism, the onset of cooling and rapid exhumation of the schist belt coincides temporally and spatially with the age of mineralisation and structural position of a regional scale low angle shear zone in Otago.
1023

Structural evolution and ore genesis of the granites gold deposits, Northern Territory / by Garry John Adams.

Adams, Garry J. (Garry John) January 1997 (has links)
Bibliography: leaves 186-210. / v, 242 leaves, [19] leaves of plates : ill. (chiefly col.), map ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / The Granites gold deposits of The Granites-Tanami Inlier are the principal interest of the thesis. / Thesis (Ph.D.)--University of Adelaide, Dept. of Geology and Geophysics, 1998
1024

A study of transition metal complexes / Paul Andrew Humphrey.

Humphrey, Paul Andrew January 1990 (has links)
Includes bibliographical references. / 249 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Physical and Inorganic Chemistry, 1991
1025

Ecophysiology and phytoremediation potential of heavy metal(Loid) accumulating plants

Kachenko, Anthony January 2008 (has links)
Doctor of Philosophy(PhD) / Soil contamination with heavy metal(loid)s is a major environmental problem that requires effective and affordable remediation technologies. The utilisation of plants to remediate heavy metal(loid)s contaminated soils has attracted considerable interest as a low cost green remediation technology. The process is referred to as phytoremediation, and this versatile technology utilises plants to phytostabilise and/or phytoextract heavy metal(loid)s from contaminated soils, thereby effectively minimising their threat to ecosystem, human and animal health. Plants that can accumulate exceptionally high concentrations of heavy metal(loid)s into above-ground biomass are referred to as hyperaccumulators, and may be exploited in phytoremediation, geobotanical prospecting and/or phytomining of low-grade ore bodies. Despite the apparent tangible benefits of utilising phytoremediation techniques, a greater understanding is required to comprehend the ecophysiological aspects of species suitable for phytoremediation purposes. A screening study was instigated to assess phytoremediation potential of several fern species for soils contaminated with cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn). Hyperaccumulation was not observed in any of the studied species, and in general, species excluded heavy metal uptake by restricting their translocation into aboveground biomass. Nephrolepis cordifolia and Hypolepis muelleri were identified as possible candidates in phytostabilisation of Cu-, Pb-, Ni- or Zn-contaminated soils and Dennstaedtia davallioides appeared favourable for use in phytostabilisation of Cu- and Zn-contaminated soils. Conversely, Blechnum nudum, B. cartilagineum, Doodia aspera and Calochlaena dubia were least tolerant to most heavy metals and were classified as being least suitable for phytoremediation purposes Ensuing studies addressed the physiology of arsenic (As) hyperaccumulation in a lesser known hyperaccumulator, Pityrogramma calomelanos var. austroamericana. The phytoremediation potential of this species was compared with that of the well known As hyperaccumulator Pteris vittata. Arsenic concentration of 3,008 mg kg–1 dry weight (DW) occurred in P. calomelanos var. austroamericana fronds when exposed to 50 mg kg–1 As without visual symptoms of phytotoxicities. Conversely, P. vittata was able to hyperaccumulate 10,753 mg As kg–1 DW when exposed to 100 mg kg–1 As without the onset of phytotoxicities. In P. calomelanos var. austroamericana, As was readily translocated to fronds with concentrations 75 times greater in fronds than in roots. This species has the potential for use in phytoremediation of soils with As levels up to 50 mg kg–1. Localisation and spatial distribution of As in P. calomelanos var. austroamericana pinnule and stipe tissues was investigated using micro-proton induced X-ray emission spectrometry (µ-PIXE). Freeze-drying and freeze-substitution protocols (using tetrahydrofuran [THF] as a freeze-substitution medium) were compared to ascertain their usefulness in tissue preservation. Micro-PIXE results indicated that pinnule sections prepared by freeze-drying adequately preserved the spatial elemental distribution and tissue structure of pinnule samples. In pinnules, µ-PIXE results indicated higher As concentration than in stipe tissues, with concentrations of 3,700 and 1,600 mg As kg–1 DW, respectively. In pinnules, a clear pattern of cellular localisation was not resolved whereas vascular bundles in stipe tissues contained the highest As concentration (2,000 mg As kg–1 DW). Building on these µ-PIXE results, the chemical speciation of As in P. calomelanos var. austroamericana was determined using micro-focused X-ray fluorescence (µ-XRF) spectroscopy in conjunction with micro-focused X-ray absorption near edge structure (µ-XANES) spectroscopy. The results suggested that arsenate (AsV) absorbed by roots was reduced to arsenite (AsIII) in roots prior to transport through vascular tissues as AsV and AsIII. In pinnules, AsIII was the predominant species, presumably as aqueous-oxygen coordinated compounds. Linear least-squares combination fits of µ-XANES spectra showed AsIII as the predominant component in all tissues sampled. The results also revealed that sulphur containing thiolates may, in part sequester accumulated As. The final aspect of this thesis examined several ecophysiological strategies of Ni hyperaccumulation in Hybanthus floribundus subsp. floribundus, a native Australian perennial shrub species and promising candidate in phytoremediation of Ni-contaminated soils. Micro-PIXE analysis revealed that cellular structure in leaf tissues prepared by freeze-drying was adequately preserved as compared to THF freeze-substituted tissues. Elemental distribution maps of leaves showed that Ni was preferentially localised in the adaxial epidermal tissues and leaf margin, with concentration of 10,000 kg–1 DW in both regions. Nickel concentrations in stem tissues obtained by µ-PIXE analysis were lower than in the leaf tissues (1,800 mg kg–1 vs. 7,800 mg kg–1 DW, respectively), and there was no clear pattern of compartmentalisation across different anatomical regions. It is possible that storage of accumulated Ni in epidermal tissues may provide Ni tolerance to this species, and may further act as a deterrent against herbivory and pathogenic attack. In H. floribundus subsp. floribundus seeds, µ-PIXE analysis did not resolve a clear pattern of Ni compartmentalisation and suggests that Ni was able to move apoplastically within the seed tissues. The role of organic acids and free amino acids (low molecular weight ligands [LMW]) in Ni detoxification in H. floribundus subsp. floribundus were quantified using high performance liquid chromatography (HPLC) and ultra performance liquid chromatography (UPLC). Nickel accumulation stimulated a significant increase in citric acid concentration in leaf extracts, and based on the molar ratios of Ni to citric acid (1.3:1–1.7:1), citric acid was sufficient to account for approximately 50% of the accumulated Ni. Glutamine, alanine and aspartic acid concentrations were also stimulated in response to Ni hyperaccumulation and accounted for up to 75% of the total free amino acid concentration in leaf extracts. Together, these LMW ligands may complex with accumulated Ni and contribute to its detoxification and storage in this hyperaccumulator species. Lastly, the hypothesis that hyperaccumulation of Ni in certain plants may act as an osmoticum under water stress (drought) was tested in context of H. floribundus subsp. floribundus. A 38% decline in water potential and a 68% decline in osmotic potential occurred between water stressed and unstressed plants, however, this was not matched by an increase in accumulated Ni. The results suggested that Ni was unlikely to play a role in osmotic adjustment in this species. Drought stressed plants exhibited a low water use efficiency which might be a conservative ecophysiological strategy enabling survival of this species in competitive water-limited environments.
1026

Synthesis and characterisation of gold and copper oxidation catalysts

Kydd, Richard Berwick, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2009 (has links)
In this work, Gold and Copper oxidation catalysts supported on a range of metal oxides were synthesised via 2 previously uninvestigated preparation methods. In the first chapter, Gold nanoparticle catalysts were deposited onto TiO2, CeO2 and ZrO2 nanoparticles via the non-aqueous Modified Photodeposition procedure. This method was found to produce smaller Gold particle sizes following intrinsic excitation of the support than the conventional aqueous phase method, with surface physisorbed water apparently acting as the sacrificial reductant. The as prepared catalysts were drastically more active than those prepared by the conventional method and under standardised tests were directly comparable to those prepared by the Deposition Precipitation Method. The second part of the work, explored the preparation of metal oxide supported Copper catalysts via the Flame Spray Pyrolysis process. CO Oxidation tests established the following order of activity for 4wt% Cu loaded on the various supports: Cu-CeO2 > Cu-TiO2 > Cu-ZrO2 > Cu-Al2O3 > Cu-SiO2. CO-TPD studies found that more active materials tended to adsorbed more CO and reacted higher proportions of this with lattice oxygen to form CO2 at lower temperatures. The addition of Cu to each metal oxide surface was found to induce lengthening of the average Metal-Oxygen bond length, with higher electron density on surface O. This phenomenum is proposed as being responsible for the widely reported ???synergistic effect??? reported for similar Cu catalysts. Cu-CeO2 (0-12wt%) catalysts were tested in the Preferential CO Oxidation (COPROX) reaction. Increasing Cu content, varied the Cu morphology from monomers, through to dimers and ultimately CuO crystallites. DFT simulations of the Cu dimer structure revealed higher levels of bonding ionicity in this morphology, relative to the monomeric structure. This coincided with higher levels of activity, reinforcing the earlier finding that highly ionic bonds are conducive to higher levels of activity. High levels of activity and selectivity were maintained until approximately 423 K. Surface redox properties of the 4wt% Cu-CeO2 catalyst were assessed using temperature-programmed reduction (CO, H2) and desorption (CO) experiments, as well as in situ and phase-resolved infrared spectroscopy to study the transition to nonselective conditions. For the first time, it was demonstrated that CO and H2 react at identical surface sites, with CO2 formation proceeding simultaneously via three distinct Cux+-CO carbonyl species. Under non-selective conditions, a gradual red-shift and loss of intensity in the carbonyl peak was observed, indicating reduction of Cu+ to Cu0 and the onset of an alternate non-selective redox-type oxidation mechanism. These results for Cu-CeO2 suggest that improved low temperature catalytic activity will only be achieved at the expense of reduced high temperature selectivity and vice versa. The final section of work explored the use of Cu-based catalysts for the low temperature oxidation of Acetaldehyde (ACA). Based on this work, it is concluded that the ACA oxidation activity of these materials is determined by two main factors: the basicity of the metal oxide support (and its subsequent ability to convert ACA to carboxylates) and the availability of surface oxygen during acetate decomposition. It is proposed that a high concentration of reducible sites (either by Cu addition or naturally occurring on CeO2) accelerates the activation and provision of oxygen and also potentially provides sites for the stabilization of methoxy intermediates resulting from the acetate decomposition.
1027

The Modification of Gold Surfaces via the Reduction of Aryldiazonium Salts

Paulik, Matthew George January 2007 (has links)
This thesis presents the study of films derived from the reduction of aryldiazonium salts at gold surfaces. The properties of bare polycrystalline surfaces were investigated via the observation of the electrochemical oxidation and reduction of the gold. Films derived from diazonium salts were electrochemically grafted to the gold surface. The structure and stability of these interfaces was examined through the use of redox probes, gold oxide electrochemistry and water contact angle measurements. The spontaneous reduction of aryldiazonium salts at gold surfaces was investigated and the possible applications it presented towards printing and patterning of the gold surface with films were explained. Polycrystalline gold surfaces were prepared and subjected to various treatments, to observe the behaviour of gold oxide formation and reduction at the surface. Various effects on the surface structure were observed after treatment in solvents and electrolyte solutions. The surface structure of the gold atoms frequently changed due to the high mobilities of the gold atoms, and it is difficult to achieve a reproducibly stable surface. The electrochemical modification of gold surfaces via the reduction of aryldiazonium salts was investigated. Surfaces were modified with methylphenyl and carboxyphenyl films and exposed to various treatments. Monitoring the gold oxide reduction changes enabled the surface coverage of modifier directly attached to the surface to be calculated. The films appear to be stable, loosely packed and porous. The films are flexible in nature; redox probe responses showed reversible changes after repeated sonication in solvents of differing polarities and hydrophilicities. Contact angle measurements further support the notion of films that can reorganise in response to their environment. The spontaneous reduction of aryldiazonium salts at gold surfaces was observed. Film coverage was significantly lower at the spontaneously grafted surface than for films grafted electrochemically. Gold surfaces were successfully modified via microcontact printing, and surface coverages similar to the spontaneously grafted film were achieved. Microcontact printing was also used to pattern surfaces with films derived from diazonium salts. Feature sizes down to 100 µm were successfully achieved.
1028

Ordovician igneous rocks of the central Lachlan Fold Belt: Geochemical signatures of ore-related magmas

Chhun, Eath January 2004 (has links)
The majority of economic gold deposits in NSW are associated with Ordovician-aged igneous rocks and are examples of the Cu-Au porphyry-skarn-epithermal association commonly developed in convergent margin to orogenic settings. They are among the oldest porphyry Cu-Au deposits in the Pacific Rim region. They are similar to younger deposits in terms of tectonic setting and structure, but the largest are chemically distinct, being associated with shoshonite magmas (Cadia, Ridgeway and Northparkes). The Lachlan Fold Belt (LFB) porphyries are subdivided into four sub-groups based mainly on their age relative to development of the Lachlan Transverse Zone (LTZ) structure. Two subgroups pre-date the LTZ, one group is syn�LTZ and one group post-dates the LTZ. No mineralisation has been found or reported among pre-I.TZ porphyries. but it is common in post- . l Z_ porphyries. Petrographic analysis and microprobe results establish a wide range of primary and secondary features within the Ordovician rocks examined in this study. Cale alkaline to shoshonitic affinities are supported by the variable abundance of primary K-feldspars. Primary mineral phases such as pyroxenes and igneous magnetite provide an indication of fractioning mineral assemblages responsible for igneous trends in magma chemistry. The hydrothermal mineral assemblages documented in these LFB study areas are characteristic of younger Cu-Au Porphyry style mineralisation. As expected, the most pervasive alteration is associated with highly mineralised shoshonitic Ordovician rocks at Ridgeway, and Cadia. the less strongly mineralised calc alkaline Ordovician rocks at Cargo. Copper Ilill and Fairholme. are correspondingly less strongly altered overall. although secondary mineral assemblages are locally abundant. Many varieties of oxides and carbonates are observed at the different study localities. Most of the studied samples conform to igneous chemical trends because they are weakly altered, although post magmatic processes, such as veining, are detectable in certain trends. The K2O enrichment of the studied samples is consistent with subductionmoditied mantle wedge sources. A few effects, such as the high Fe203 contents of some Ridgeway samples, probably reflect porphyry-style hydrothermal alteration processes. Host rocks at the Cadia and Ridgeway are entirely alkalic on the K2O versus SiO2 plot and shoshonitic on the Total Alkalies versus SiO2 plot. Igneous rocks at the other deposits display a range of compositions between low K tholeiites to shoshonites that in some cases reflects multiple igneous suites. The LREE and L1LE enrichments, and HFSE depletions (Nb, Ta and Ti) of the magmas associated with these deposits are characteristics of a subduction-related tectonic setting. They all fall in the volcanic-arc granite and syn-collisional granite field of the Nb-Y tectonic discrimination diagram. Several magma types are identified by differences in the HFSE and REE trends. Differences in the extent and style of magma fractionation are evident in the trace element data. The Ridgeway samples define a wider range of trace element concentrations than the Cadia samples that may indicate a greater extent of fractionation during emplacement of the Ridgeway magmas. Fairholme samples display a high Nh and /If trends that are distinct from the main fields on Zr variation diagrams. Compositional differences between larger Cu-Au deposits, Cadia-Ridgeway and smaller deposits, Copper Ifill, Cargo and Fairholme are evident in terms of Nb-Ta depletion and variation. The smaller deposits show constant Nb/Ta or negative Nb/Ta trends that extend to high Nb. The larger deposits display positive Nb/Ta trends that do not extend to high Nb. This distinction reflects a difference of preferential incorporation of Nb in a mineral phase (magnetite). Comparisons between Cadia-Ridgeway and other shoshonite (altered samples of Bajo de la Alumbrera, Argentina), calc alkaline magmas from New Zealand and rocks from other areas indicate that Nb/Ta is not directly correlated with the shoshonitic classification, K2O vs. SiO2, and that the Cadia-Ridgeway Nb and Ta variation is not the result of alteration. The fact that the weakly altered LFB Capertee shoshonites exhibit a narrow range of Nb and low Nb/Ta suggest the shoshonite trend for the LFB as a whole is a steep one on the Nb/Ta versus Nb plot. The results of this study could provide important information for exploration within the LFB. Only the Cadia and Ridgeway deposits display a wide range of Nb/Ta values and lack the near-horizontal trend seen for other localities associated with smaller deposits. The tectonic evolution of the LFB is a major factor contributing to occurrence of large porphyry Cu-Au deposits. The sequence of important events, however, commences with sub-crustal generation of oxidised magma and finishes with efficient Cu-Au accumulation by hydrothermal processes at favourable structural sites. The increase in Au-Cu deposit size from small (Copper Hill-Cargo) to world class (Cadia-Ridgeway) indicates the importance of magma composition during this process. The most obvious differences between the Cadia-Ridgeway and New Zealand rocks is that the latter are volcanic in origin and associated with an arc-back arc system. Therefore, they did not form in a tectonic regime suitable for the evolution of porphyries and the focussed movement of hydrothermal fluids during dilatant episodes. As a result, they are not linked to mineralisation despite having Nb-Ta and Nb/Ta variations that are typical of the high oxidation states in Au-prospective magmas of the LFB.
1029

The Nature of Gold Mineralization in the Multistage Archean Sunrise Dam Gold Deposit, Eastern Yilgarn Craton, Western Australia

Sung, Yoo Hyun January 2008 (has links)
This thesis presents the results of a detailed study of the mineralogy and paragenesis of gold at the Sunrise Dam gold deposit. The Sunrise Dam mine is the largest gold deposit in the Archean Laverton Tectonic Zone of the Eastern Goldfields Province, Yilgarn Craton, Western Australia. A number of previous studies have established the geology, geochemistry and geochronology, but the nature of the gold mineralogy and distribution has remained poorly characterized. Mineralogical studies have established a paragenetic sequence consisting of five hydrothermal stages (D1, D2, D3, D4a and D4b) which are generally in accord with the major deformation events at Sunrise Dam gold deposit. The D4a stage was the dominant episode of Au deposition, followed, in importance by the D4b stage, which is characterized by more diverse ore mineralogy including base metal sulfides, sulfosalts, and telluride minerals. Based on EPMA results, native gold in D4a stage has higher purity, with a small range of Ag variations (fineness 923 ~ 977, average 945), than that of the D4b stage (fineness 596 ~ 983, average 899), in which fineness values decrease systematically in accord with mineral paragenesis, reflecting that gold deposition was from a progressively compositionally evolving hydrothermal fluid with respect to Au/Ag ratios. The occurrences of As-rich pyrites are restricted to steeply-dipping ore bodies, which are most likely structurally connected at various level by channel ways through which As-rich (D4a) hydrothermal fluid migrating upward. There is a systematic variation in composition of the tetrahedrite-group minerals ranging from Sb to As end-members with highly variable Zn:Fe ratios, which correlates with the later paragenetic stages (D3, D4a, and D4b) and mineral associations. The composition of the tetrahedrite-group minerals is useful as a petrogenetic indicator of the evolution of the hydrothermal mineralizing systems with time. A total of thirteen telluride mineral species, including two unnamed phases, were identified in the D4 veins. Among them nagyágite, the complex Pb-Sb-Au tellurosulfide is most abundant. The deposit is the second occurrence of this mineral in the Yilgarn Craton. Compositionally, nagyágite from Sunrise Dam conforms to ideal stoichiometry, with negligible As content and Au/(Au+Te) ratio of 0.325. The diverse mineralogy of the post-D4 veinlets relative to the host veins is attributed to small-scale reaction fronts established along zones of replacement. The presence of Au-Ag tellurides in D4 veins and the character of their breakdown products have implications for the gold recovery as well as for the genetic interpretation of the deposit. During the D4b stage, Au-richer telluride and Au-richer native gold mineralization formed earlier than Ag-(Au)-telluride and Ag-richer gold mineralization. Values of f(Te2) and f(S2) for the early telluride assemblages were determined at 300°C to be -10.7 to -7.8 (log fTe2) and 11.4 to -8.6( log fS2 ). The Au content of arsenian pyrite and arsenopyrite from four mineralizing stages (D1, D3, D4a and D4b) was measured using in-situ LA-ICP-MS. The average Au concentration is 44.5 ppm in pyrite (n = 224) with maximum value of 3,067 ppm, and 1,483 ppm in arsenopyrite (n = 35) with maximum value of 5,767 ppm, which are the highest concentrations reported for the Yilgarn Craton. The concentrations of invisible Au in arsenian pyrite at Sunrise Dam varies with mineralizing events, mineral paragenesis, and textural type. Gold is strongly enriched in D4a stage pyrite (average 80.8 ppm) and to a lesser extent in D4b pyrite (average 16.8 ppm). Pyrite from D1 (average 3.55 ppm) and D3 (average 2.96 ppm) show much lower levels of Au enrichment. The presence of metallic Au below the Au solubility limit in the Sunrise Dam pyrite is interpreted as evidence of an epigenetic origin for Au mineralization. Small-scale remobilization during dissolution-reprecipitation (D4a) and recrystallization (post-D4b) processes resulted in the Au enrichment and the upgrading of Au during successive hydrothermal events in the deposit. The speciation of Au at Sunrise Dam and the exceptional size of the deposit are the result of multiple fluid flow and multiple Au-precipitating mechanisms over a single plumbing system.
1030

Electron transport in nanoparticle single-electron transistors

Luo, Kang, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.

Page generated in 0.0392 seconds