Spelling suggestions: "subject:"brain boundary""
51 |
On the role of defect incompatibilities on mechanical properties of polycrystalline aggregates: a multi-scale studyUpadhyay, Manas Vijay 12 January 2015 (has links)
The main objective of this thesis is to obtain critical insight on the role of crystalline incompatibilities in strain and curvature, induced in presence of line defects i.e. dislocations and disclinations, on the energy and geometry of specific features of the local microstructure, and on the bulk mechanical response of nanocrystalline/ultra-fine grained
materials. To that end, studies are performed at the (1) inter-atomic and fine scale, and (2) at the mesoscale. The modelling approach is based on the field dislocation and disclination mechanics theory of continuously representated dislocations and disclinations. New, thermodynamically rigorous, multi-scale elastic constitutive laws based on the couple stress theory are developed to capture the effect of strain and curvature incompatibilities on the Cauchy and couple stresses. A new meso-scale elasto-viscoplastic constitutive model of defect incompatibilities based on a fast Fourier transform technique is developed. The desired scale transitioning is achieved via novel phenomenological defect density transport equations and the newly developed elastic constitutive laws.
At the fine scale, the model is applied to study energetic interactions between strain and curvature incompatibilities associated with grain boundaries and their influence on triple line energies. Results reveal that incompatible lattice strains have the most significant contribution to the energy. Incompatible lattice curvatures have negligible energetic contributions but are necessary to characterize the geometry of grain boundaries. Finally, both incompatible lattice strains and curvatures are necessary to capture the structure sensitive mechanical behavior of grain boundaries.
At the mesoscale, deformation of nanocrystalline aggregates characterized by residual curvatures is studied to identify the impact of the latter's presence on the local and bulk mechanical response of the aggregate. Relaxation of local stresses generated from residual curvatures reproduces the effect of GB dislocation emission. Uniaxial tensile loading of nanocrystalline microstructures containing residual curvatures reveals a softening in the yield stress which could explain the breakdown in Hall-Petch law in the nanocrystalline regime.
Next, the possibility of characterizing incompatibilities using X-ray or neutron diffraction techniques is tested. Results reveal that only strains and their gradients contribute to the broadening of diffraction peaks; curvatures and their gradients have no contribution. This study leads to the development of a new multi-scale averaged strain based Fourier technique for generating virtual diffraction peaks.
|
52 |
Grain boundary engineering for intergranular stress corrosion resistance in austenitic stainless steelEngelberg, Dirk Lars January 2006 (has links)
Austenitic stainless steels are frequently used for engineering applications in aggressive environments. Typical sources of component failures are associated with localized attack at grain boundaries, such as intergranular corrosion and stress corrosion cracking. To prevent premature failures, structural integrity assessments are carried out, with the aim of predicting the maximum likelihood of cracking that may develop. For accurate predictions it is of great importance to know the interaction of parameters involved in life-determining processes. This PhD thesis investigates the effect of microstructure and stress on intergranular stress corrosion cracking in Type 302 / Type 304 austenitic stainless steels. High-resolution X-ray tomography has been successfully applied to examine, for the first time in 3-dimensions, in-situ, the interaction between microstructure and crack propagation. The development and subsequent failure of crack bridging ligaments has been observed and correlated with regions of ductile tearing persistent on the fracture surface. These ductile regions were consistent with the morphology of low-energy, twin-type grain boundaries, and are believed to possess the capability of shielding the crack tip. Following this observation, a new grain bridging model has been developed, in order to quantify the effect of static stress and crack bridging on the maximum likely crack length. The model was compared and evaluated with in the literature available percolation-like models. Intergranular stress corrosion tests in tetrathionate solutions have been designed and carried out to validate the new model. The assessment comprised,(i) a thorough examination of the microstructure and analysis parameters employed,(ii) the determination of the degree of sensitisation with subsequent crack path investigations,(iii) the identification of a suitable test system with associated grain boundary susceptibility criteria,(iv) the application of Grain Boundary Engineering (GBE) for microstructure control,(v) statistical crack length assessments of calibrated IGSCC test specimens. The results of these tests showed that the new model successfully predicts the magnitude of stress and the effect of grain boundary engineering on the maximum crack lengths.
|
53 |
High temperature creep performance of alloy 800H.Gardiner, Benjamin Robert January 2014 (has links)
Investigations on post service material showed that Alloy 800H pigtails from methanol producer Methanex have service lives ranging from 3 to 18 years. Because of this variability in service life, Alloy 800H creep performance was assessed and a new criterion for its procurement developed. The current criterion recommends an ASTM grain size of 5 (72µm) or coarser with no consideration given to grain size distribution, grain boundary types, or grain boundary network topology. Results from the investigation showed that this current criterion may produce variations in steady state creep rates of an order of magnitude between ASTM grain size 1 and 5, and a 2.5 times variation in creep ductility.
The ability to accurately reveal grain boundaries and assess grain boundary types is fundamental to the identification and quantification of coherent twin boundaries, and the measurement of average grain size and grain size distribution. EBSD mapping has the ability to distinguish grain boundary types using crystal orientation measurement. Grain size measurement from optical micrographs relies on morphological indicators to identify coherent twins. However, it is shown that many of the boundaries observed as straight line morphology on 2D sections did not possess {111} (coherent) interfaces.
3D reconstructions of Alloy 800H revealed the deficiencies in classifying geometry from two-dimensional (2D) sections. Σ3 Crystal volumes can be categorized as lamellar or edge structures. Lamellar structures are characterized by the appearance of parallel Σ3 boundary planes while an edge structure contains a single Σ3 interface. Sectioning plane location alters the perception of morphology. For simple twin structures, the tradition 2D classifications of morphology (complete parallel, incomplete parallel and corner Σ3) may all appear on a section plane from a single lamellar structure.
|
54 |
Efeito de características microestruturais na difusividade do hidrogênio em dois aços grau API X65. / Effect of microstructural features on the H diffusivity in two API X65 steels.Pereira, Viviam Serra Marques 31 January 2017 (has links)
Os aços de alta resistência e baixa liga são amplamente utilizados em dutos transportadores de óleo e gás e, atualmente, o desenvolvimento de novos projetos de liga e o uso de técnicas altamente avançadas de fabricação e processamento dos aços se tornaram essenciais para obtenção de estruturas que resistam aos danos provocados por H, principal motivo de falha de oleodutos e gasodutos em meios ricos em H2S. No presente trabalho, avaliou-se o efeito de características microestruturais na difusividade do H em dois aços grau API X65, com diferentes teores de Mn. Uma das chapas ainda está em fase experimental de desenvolvimento, tem baixo teor de Mn e foi produzida para aplicação em ambientes sour. A outra chapa tem alto teor de Mn, já é usada comercialmente há alguns anos e foi desenvolvida para trabalho em ambientes doces. Os dois materiais passaram por caracterização microestrutural nas três seções da chapa: longitudinal e transversal à direção de laminação e do topo da chapa (paralela à direção de laminação). Após a caracterização, amostras de cada seção dos aços foram submetidas a ensaios de permeabilidade ao H; o aço baixo Mn passou por análises de EBSD (Difração de Elétrons Retroespalhados), para determinação de textura. O aço baixo Mn tem microestrutura homogênea ao longo da espessura da chapa, composta por ferrita refinada e pequenas ilhas de perlita. O aço alto Mn, por sua vez, apresenta microestrutura heterogênea ao longo da espessura, formada por bandas de ferrita e perlita, com marcada presença de segregação central de elementos de liga. Os ensaios de permeabilidade ao H mostraram que os coeficientes de difusão efetiva do H, Deff, do aço baixo Mn são ligeiramente superiores aos do aço alto Mn. Outros dois importantes parâmetros que foram calculados para os dois aços são a concentração de H na sub-superfície do material, C0, e o número de traps por unidade de volume, Nt. Contrariando expectativas, o aço baixo Mn apresentou maiores valores de C0 e Nt do que o aço alto Mn. Ensaios preliminares de dessorção térmica realizados nos dois aços mostraram os mesmos resultados: o aço baixo Mn aprisiona mais H do que o aço alto Mn. Estes resultados contraditórios de C0 e Nt foram atribuídos à presença de nanoprecipitados de microadições de liga no aço baixo Mn, não detectáveis por microscopia óptica e eletrônica de varredura. Ainda, para os dois aços, os valores de Deff variaram em função da seção analisada da seguinte maneira: Deff longitudinal ? Deff transversal > Deff topo. Para entender melhor o comportamento anisotrópico da difusão do H nos dois aços calculou-se um novo coeficiente de difusão, que foi chamado de coeficiente de difusão no estado estacionário, Dss. O Dss considera que todos os traps do aço estão saturados, permitindo, assim que se avalie somente o efeito de obstáculos físicos à difusão do H. No aço alto Mn, o Dss variou da mesma maneira que o Deff: Dss longitudinal ? Dss transversal > Dss topo; este comportamento foi atribuído ao bandeamento presente no material. No aço baixo Mn, o Dss variou de forma diferente do Deff: Dss transversal > Dss longitudinal >= Dss topo, indicando que a difusão do H pode ser auxiliada por contornos de grão enquanto os traps estão sendo saturados, e que a textura cristalográfica pode influenciar a difusão após o estado estacionário ser atingido. / High strength low alloy steels are widely applied as pipelines for crude oil and natural gas transportation and, currently, new approaches to alloy design, in addition to the use of advanced steelmaking and processing techniques, have become essential for obtaining structures that resist to hydrogen damage, which is the main cause of pipelines failure in H2S-rich environments. The main objective of the present work is to evaluate the influence of microstructural features on hydrogen diffusivity in two API X65 steels, with different Mn contents. One of the steel plates has been recently developed for usage in sour environments, is on its experimental stage and has a low Mn content. The other one is a commercial plate steel, with high Mn content, developed for sweet applications. Both steel plates were characterized in its three sections, in relation to the rolling direction: longitudinal, transverse and top surface of the plate (parallell to the rolling direction). After that, samples obtained from each section of the plates were submitted to hydrogen permeation tests; the low Mn steel was also analysed with EBSD, for texture determination. The low Mn steel presents a homogeneous microstructure through plate thickness, composed of refined ferrite and small pearlite islands. The high Mn steel has a heterogeneous microstructure through the plate thickness, composed of ferrite and pearlite bands, and presents centerline segregation. Hydrogen permeation tests showed that the Deff obtained for the low Mn steel sections are slightly higher than for the high Mn steel. Another two important parameters that were calculated for both steels are the subsurface hydrogen concentration, C0, and the number of traps per unit volume, Nt. Contrary to what was expected, the low Mn steel presented the higher C0 and Nt values. Thermal dessorption spectroscopy analysis confirmed that the low Mn steel traps more H atoms than the high Mn one. These results, along with the similar Deff values, were related to the presence of nanoprecipitates of microalloying elements, that cannot be detected via optical and scanning electron microscopy. Additionally, also for both steels, the Deff values varied in function of the analyzed section as it follows: Deff longitudinal ? Deff transverse > Deff top. In order to better understand this anisotropic behavior, a new diffusion coefficient, which was called diffusion coefficient at the steady state, Dss, was determined. Dss considers that all the trapping sites are saturated, enabling, thus, the evaluation of physical obstacles to H diffusion. For the high Mn steel, the Dss varied in the same matter as the Deff: Dss longitudinal ? Dss transverse > Dss top; this behavior was associated with the microstructural banding present in the material. For the low Mn steel, the Dss exhibited a different behavior: Dss transverse > Dss longitudinal >= Dss top, suggesting that H diffusion can be aided by grain boundaries while the trapping sites are being filled and that crystallographic texture may play its role after the steady state is reached.
|
55 |
MICROSTRUCTURAL EVOLUTION IN NiO-MgO: LINKING EQUILIBRIUM CRYSTAL SHAPE AND GRAIN GROWTHDavid A. Lowing (5930006) 17 January 2019 (has links)
Ceramic materials are natural or synthetic, inorganic, non-metallic materials incorporating ionic and covalent bonding. Most ceramics in use are polycrystalline materials where grains are connected by a network of solid-solid interfaces called grain boundaries. The structure of the grain boundaries and their arrangement play a key role in determining materials properties. Developing a fundamental understanding of the formation, structure, migration and methods of control grain boundaries have drawn the interest of scientists for over a century.<br> While grain boundaries were initially treated as isotropic, advances in materials science has expanded to include energetically anisotropic boundaries. The orientation and structure of a grain boundary, determined by this anisotropy, controls the mobility of a grain boundary. The mobility is the controlling factor during grain growth impacting the microstructural evolution of a material.<br> This thesis covers fundamental research to model how a materials’ equilibrium crystal shape can be used as a grain growth control mechanism. First an overview of ceramic processing and microstructural development is presented with a focus on the role of grain boundaries in determining the properties of a material. The role of anisotropy and related recent work is highlighted setting the foundation for the link between the equilibrium crystal shape and grain growth. A discussion on the selection of the NiO-MgO system for all experimental work is included.<br> A novel production and processing route for NiO-MgO was developed. Mechanical alloying and milling resulted in significant impurity contamination therefore a chemical production route was used. A modified amorphous citrate process was developed where metal salts containing Ni and Mg were mixed with a polyfunctional organic acid. Rapid dehydration and calcination at 500°C resulted in chemically homogeneous powders. The amorphous citrate production route produced powder with crystallites ranging from 244-393 nm and agglomerates ranging from 20-300 μm with plate-like morphology.<br> NiO-MgO powders produced via the amorphous citrate method were sintered using various techniques. Conventional sintering was unable to produce fully dense samples peaking with relative densities from 95-96%. The introduction of pressure through spark plasma sintering and hot pressing improved the relative sample density to 97-100%. It was discovered that exposure to the vacuum required for spark plasma sintering and hot pressing resulted in the reduction of NiO. Spark plasma sintering created oxygen depleted regions and hot pressing further reduced NiO to pure nickel metal which precipitated out at the grain boundaries.<br> Due to the poor sintering behavior of NiO-MgO grain growth experiments were carried out on the large agglomerates formed during the amorphous citrate process. Agglomerates with more than 50 grains with a thickness of at least 1 μm were selected. Grain growth was measured across five compositions with Ni:Mg ratios of 100:0, 75:25, 50:50, 25:75, 0:100. The average grain size and growth rate increased with increasing nickel content with a significant jump between 50% and 75%. Increasing nickel content was also observed to correspond with a higher number of grains exhibiting surface faceting.<br> The NiO-MgO equilibrium crystal shape as a function of composition was measured previously. To make the equilibrium crystal shape a more viable control for grain growth a quantitative microstructural characterization technique was developed to measure a materials equilibrium crystal shape. Topographic surface information (surface facets measured by atomic force microscopy, AFM) and grain crystallographic orientation (measured by electron back-scattered diffraction, EBSD) were combined to produce the crystallographic topography of a sample surface. Surface crystallographic topography was used to identify the faceting behavior of grains with a range of orientations. Using the combined data, facet stability maps (n diagrams) for NiO-MgO were developed.<br> Controlling grain growth via the equilibrium crystal shape offers the potential to produce microstructures with a high frequency of desirable grain boundaries (grain boundary engineering) and therefore properties. The combination of using AFM and EBSD to create crystallographic topographical surface data and n-diagrams has been demonstrated. N-diagrams for most materials do not exist, but the technique used here can be applied to a wide range of materials and will expand the ability to control microstructures of ceramic materials.<br><br>
|
56 |
Controlling interfacial reaction in aluminium to steel dissimilar metal weldingXu, Lei January 2016 (has links)
Two different aluminium alloys, AA6111 (Al-Mg-Si) and AA7055 (Al-Mg-Zn), were chosen as the aluminium alloys to be welded with DC04, and two welding methods (USW and FSSW) were selected to prepare the welds. Selected pre-welded joints were then annealed at T=400 - 570oC for different times. Kinetics growth data was collected from the microstructure results, and the growth behaviour of the IMC layer was found to fit the parabolic growth law. A grain growth model was built to predict the grain size as a function of annealing time. A double-IMC phase diffusion model was applied, together with grain growth model, to predict the thickness of each phase as a function of annealing time in the diffusion process during heat treatment. In both material combinations and with both welding processes a similar sequence of IMC phase formation was observed during the solid state welding. η-Fe2Al5 was found to be the first IMC phase to nucleate. The IMC islands then spread to form a continuous layer in both material combinations. With longer welding times a second IMC phase, θ-FeAl3, was seen to develop on the aluminium side of the joints. Higher fracture energy was received in the DC04-AA6111 joints than in the DC04-AA7055 joints. Two reasons were claimed according to the microstructure in the two joints. The thicker IMC layers were observed in the DC04-AA7055 joints either before or after heat treatment, due to the faster growth rate of the θ phase. In addition, pores were left in the aluminium side near the interface as a result of the low melting point of AA7055.The modelling results for both the diffusion model and grain growth model fitted very well with the data from the static heat treatment. Grain growth occurred in both phases in the heat treatment significantly, and was found to affect the calculated activation energy by the grain boundary diffusion. At lower temperatures in the phases with a smaller grain size, the grain boundary diffusion had a more significant influence on the growth rate of the IMC phases. The activation energies for the grain boundary diffusion and lattice diffusion were calculated as 240 kJ/mol and 120 kJ/mol for the η phase, and 220 kJ/mol and 110 kJ/mol for the θ phase, respectively. The model was invalid for the growth of the discontinuous IMC layers in USW process. The diffusion model only worked for 1-Dimensional growth of a continuous layer, which was the growth behaviour of the IMC layer during heat treatment. However, due to the highly transient conditions in USW process, the IMC phases were not continuous and uniform even after a welding time of 2 seconds. Therefore, the growth of the island shaped IMC particles in USW was difficult to be predicted, unless the nucleation stage was taken into consideration.
|
57 |
Non-Schmid Effects and Criteria for Dislocation Nucleation on Different Slip Systems at Grain BoundariesWyman, Richard Durtschi 01 June 2016 (has links)
Criteria for grain boundary dislocation nucleation are developed. A bicrystal containing two grain boundaries is placed under varying triaxial stress states using molecular dynamics. The local resolved shear, normal, and co-slip stresses needed for grain boundary dislocation nucleation are found. A framework is developed to detect the slip system grain boundary dislocation nucleation occurs on. A survey of the different ways grain boundary dislocation nucleation occurs in the sample shows a single grain boundary can nucleate dislocations in a rich variety of ways. Using the nucleation system and resolved stress values, criteria for grain boundary dislocation nucleation on different slip systems are developed. The proposed form of nucleation criterion suggests the activation stress has a linear dependence one the resolved shear, normal, and co-slip stresses. A residual analysis largely validates the efficacy of the proposed linear model. We show that the nucleation slip system cannot be predicted by a maximum Schmid factor analysis due to the non-Schmid resolved normal and co-slip terms. We show that a system's global pressure generally fails to predict nucleation; a local stress in the grain being nucleated into should be used. Using the nucleation criteria for each slip system, a yield surface for dislocation nucleation is built for the grain boundary used in this work.
|
58 |
Methods of Thermoelectric Enhancement in Silicon-Germanium Alloy Type I Clathrates and in Nanostructured Lead ChalcogenidesMartin, Joshua 05 March 2008 (has links)
The rapid increase in thermoelectric (TE) materials R&D is a consequence of the growing need to increase energy efficiency and independence through waste heat recovery. TE materials enable the direct solid-state conversion of heat into electricity, with little maintenance, noise, or cost. In addition, these compact devices can be incorporated into existing technologies to increase the overall operating efficiency. High efficiency TE materials would enable the practical solid-state conversion of thermal to electrical energy. Optimizing the interdependent physical parameters to achieve acceptable efficiencies requires materials exhibiting a unique combination of properties. This research reports two methods of thermoelectric enhancement: lattice strain effects in silicon-germanium alloy type I clathrates and the nanostructured enhancement of lead chalcogenides.
The synthesis and chemical, structural, and transport properties characterization of Ba8Ga16SixGe30-x type I clathrates with similar Ga-to-group IV element ratios but with increasing Si substitution (4 < x < 14) is reported. Substitution of Si within the Ga-Ge lattice framework of the type I clathrate Ba8Ga16Ge30 results in thermoelectric performance enhancement. The unique dependences of carrier concentration, electrical resistivity, Seebeck coefficient, and carrier effective mass on Si substitution level, may imply a modified band structure with Si substitution. These materials were then further optimized by adjusting the Ga-to-group IV element ratios.
Recent progress in a number of higher efficiency TE materials can be attributed to nanoscale enhancement. Many of these materials demonstrate increased Seebeck coefficient and decreased thermal conductivity due to the phenomenological properties of nanometer length scales. To satisfy the demands of bulk industrial applications requires additional synthesis techniques to incorporate nanostructure directly within a bulk matrix. This research investigates, for the first time, dense dimensional nanocomposites prepared by densifying nanocrystals synthesized employing a solution-phase reaction. Furthermore, the carrier concentration of the PbTe nanocomposites can be adjusted by directly doping the nanocrystals, necessary for power factor optimization. These materials were fully characterized using a low temperature TE transport measurement system, and exhibit enhanced power factors when compared to bulk polycrystalline PbTe with similar carrier concentrations.
|
59 |
Modélisation de la croissance de matériaux polycristallins par la méthode du champ de phase.Mellenthin, Jesper 26 September 2007 (has links) (PDF)
La méthode d'élimination sur le terrain est devenu ces dernières années la méthode de choix pour modéliser la formation des motifs de la microstructure lors de la solidification. Pour monocristaux, accord quantitatif avec des expériences et des solutions analytiques ont été obtenues. La modélisation des polycristaux, qui sont composées de nombreux grains d'une même phase thermodynamique, mais différentes orientations du réseau cristallin, est beaucoup moins avancée. Deux types de modèles ont été proposés: les modèles multi-phase-champ d'utiliser un champ de phase pour chaque grain, et les modèles d'orientation-champ d'utiliser un petit nombre de domaines, mais ont des termes non analytiques dans leur énergie libre fonctionnel. Ce travail examine les divers aspects de la phase de modélisation du champ de polycristaux et est divisé en trois parties. Dans la première, une nouvelle possibilité de décrire l'orientation locale est explorée, en utilisant un paramètre d'ordre tensoriel qui représente automatiquement la symétrie locale du système. Cette approche est testée en phase de développement d'un modèle de champ pour la transition de phase nématique-isotrope dans les cristaux liquides. Le modèle est appliqué pour simuler la solidification directionnelle''''d'un cristal liquide. L'effet du couplage entre l'orientation et la forme nématique interface est étudiée. Les résultats de simulation pour la stabilité d'une interface plane en bon accord avec une analyse de stabilité généralisée, qui tient compte d'une condition nouvelle d'ancrage à l'interface: l'orientation à l'interface nématique est le résultat de l'interaction entre la déformation en vrac et l'anisotropie d'interface. La forme et la stabilité des cellules bien développé est également influencée par cet effet. Numériquement, l'utilisation d'un paramètre d'ordre tensoriel simplifie le traitement des symétries dans le système de manière significative, tandis que les équations de mouvements deviennent beaucoup plus compliquées. Dans la deuxième partie, les joints de grains sont étudiés sur une échelle plus petite longueur, en utilisant un modèle de cristal phase de terrain, où les propriétés élastiques et des dislocations apparaissent naturellement. Avec ce modèle, l'ordre local dans les interfaces est examiné et la stabilité des films liquides entre deux grains solides est étudiée ci-dessous le point de fusion. Cette situation peut être décrite par un potentiel d'interaction entre les deux interfaces solide-liquide, qui est extraite numériquement. Les résultats sont comparés avec un modèle phénoménologique qui se trouve à tenir pour les joints de grains à forte inclinaison, où les dislocations se chevauchent. Pour les joints de grains à faible angle, autour de préfusion dislocation ainsi qu'une brisure de symétrie (paires de dislocations forme) est observée. En conséquence, le potentiel d'interaction devient nonmonotonous, et se compose d'une attraction à longue portée et une répulsion à courte portée. Dans la troisième partie, un nouveau modèle de phase sur le terrain est développé en utilisant une variable d'angle pour décrire l'orientation cristalline. Contrairement aux modèles déjà existants, l'énergie libre est construit sans un terme proportionnel au module du gradient du champ de l'orientation. Au lieu de cela, le gradient de la norme au carré est utilisé, mais il est couplé à la phase du champ avec une fonction de couplage singulier. Diverses simulations référence sont réalisés afin de tester le modèle. Il se trouve qu'elle présente plusieurs artefacts tels que la rotation et le mouvement du grain parasite interface, mais ces effets sont extrêmement petites, telles que le modèle donne des résultats satisfaisants que si la surfusion est très faible. Enfin, les problèmes observés sont analysés et des moyens d'obtenir une meilleure description de la dynamique de l'angle de champ sont discutées.
|
60 |
Constitutive and fatigue crack propagation behaviour of Inconel 718Gustafsson, David January 2010 (has links)
In this licentiate thesis the work done in the TURBO POWER project Influence of high temperature hold times on the fatigue life of nickel-based superalloys will be presented. The overall objective of this project is to develop and evaluate tools for designing against fatigue in gas turbine applications, with special focus on the nickel-based superalloy Inconel 718. Firstly, the constitutive behaviour of the material has been been studied, where focus has been placed on trying to describe the mean stress relaxation and initial softening of the material under intermediate temperatures. Secondly, the fatigue crack propagation behaviour under high temperature hold times has been studied. Focus has here been placed on investigating the main fatigue crack propagation phenomena with the aim of setting up a basis for fatigue crack propagation modelling. This thesis is divided into two parts. The first part describes the general framework, including basic constitutive and fatigue crack propagation behaviour as well as a theoretical background for the constitutive modelling of mean stress relaxation. This framework is then used in the second part, which consists of the four included papers.
|
Page generated in 0.0744 seconds