• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 20
  • 15
  • 7
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 193
  • 193
  • 47
  • 44
  • 39
  • 27
  • 27
  • 26
  • 22
  • 21
  • 21
  • 21
  • 20
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

5D Grain Boundary Characterization from EBSD Microscopy

Amalaraj, Akash Savio 01 December 2018 (has links)
Knowledge of the full 5-degree Grain Boundary Character Distribution (GBCD) is vital to understanding properties, such as gas diffusivity, that are dominated by grain boundary character. Surface characterization techniques, such as Electron Backscattered diffraction (EBSD), can provide only 4 of the 5 GB characteristics (the rotation between the neighboring grains, and the trace of the GB on the surface). The inclination of the GB in the direction normal to the surface is not known. A previous study indicated that the GB inclination could be recovered by correlating the Electron Backscattered patterns (EBSPs) of sample points near the GB with EBSPs taken from the centers of the neighboring grains. The resultant transition curve could be compared with theoretical curves obtained from MonteCarlo simulations of electron yield from the two grains. However, a practical method based upon this study was never implemented. Here, a few microscopy and image filters have been applied to the EBSPs to improve the image quality. Also, several experiments have been conducted to verify and validate the interaction volume of the materials used to produce theoretical transition curves, in order to receive more accurate results. In this work, it is hypothesized that transition curves obtained from considering individual band intensities from the EBSPs will give more informative transition curves. The filtered EBSPs from the band intensities coupled with the accurate interaction volume values, should give us more reliable and repeatable transition curves, and that a more detailed comparison of the experimental and simulated transition curves will give higher fidelity results, in terms of GB inclination determination.
92

Grain boundary wetting in the Al–Zn and Al–Mg alloys

Kogtenkova, O.A., Straumal, B.B. 17 September 2018 (has links)
No description available.
93

Computer simulation of atomic complexes formation in grain boundaries

Itckovich, A., Mendelev, M., Rodin, A., Bokstein, B. 19 September 2018 (has links)
No description available.
94

Cation and Anion Transport in a Dicationic Imidazolium-Based Plastic Crystal Ion Conductor

Kidd, Bryce Edwin 10 July 2013 (has links)
Here we investigate the organic ionic plastic crystal (OIPC) 1,2-bis[N-(N\'-hexylimidazolium-d2(4,5))]C2H4 2PF6- in one of its solid plastic crystal phases by means of multi-nuclear solid-state (SS) NMR and pulsed-field-gradient (PFG) NMR. We quantify distinct cation and anion diffusion coefficients as well as the diffusion activation energies (Ea) in this dicationic imidazolium-based OIPC. Our studies suggest a change in transport mechanism for the cation upon varying thermal and magnetic treatment (9.4 T), evidenced by changes in cation and anion Ea. Moreover, variable temperature 2H SSNMR lineshapes further support a change in local molecular environment upon slow cooling in B0. Additionally, we quantify the percentage of mobile anions as a function of temperature from variable temperature 19F SSNMR, where two distinct spectral features are present. We also comment on the pre-exponential factor (D0), giving insight into the number of degrees of freedom for both cation and anion as a function of thermal treatment. In conjunction with previously reported conductivity values for this class of OIPCs and the Stokes-Einstein relation, we propose that ion conduction is dominated by anion diffusion between crystallites (i.e., grain boundaries). Using our experimentally determine diffusion coefficient and previously reported PF6- hydrodynamic radius (rH), viscous (" = 4.1 Pa " s) ionic liquid (IL) is present with a cation rH of 0.34 nm. NMR measurements are very powerful in elucidating fundamental OIPC properties and allow a deeper understanding of ion transport within such materials. / Master of Science
95

Changes in Microstructure and Mechanical Properties of Aluminum Alloys Heavily Deformed by Torsion / ねじり変形により強加工されたアルミニウム合金の組織および機械的性質の変化

Sunisa Khamsuk 25 November 2013 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第17956号 / 工博第3804号 / 新制||工||1582(附属図書館) / 30786 / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 辻 伸泰, 教授 松原 英一郎, 教授 安田 秀幸 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
96

Effect of Grain Size on the Hydrogen Embrittlement Behaviors in High-manganese Austenitic Steels / 高Mnオーステナイト鋼の水素脆化挙動に及ぼす結晶粒径の影響

Bai, Yu 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19308号 / 工博第4105号 / 新制||工||1633(附属図書館) / 32310 / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 辻 伸泰, 教授 白井 泰治, 教授 乾 晴行 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
97

Relating Grain Boundaries to the Mechanical Properties of Polycrystalline Material: Gradient Nanocrystalline Material and Electro-Plasticity

Zhao, Jingyi, Zhao January 2018 (has links)
No description available.
98

Grain-Boundary Parameters Controlled Allotriomorphic Phase Transformations in Beta-Processed Titanium Alloys

Dixit, Vikas 21 May 2013 (has links)
No description available.
99

Detail Extraction from Electron Backscatter Diffraction Patterns

Basinger, John A. 13 December 2011 (has links) (PDF)
Cross-correlation based analysis of electron backscatter diffraction (EBSD) patterns and the use of simulated reference patterns has opened up entirely new avenues of insight into local lattice properties within EBSD scans. The benefits of accessing new levels of orientation resolution and multiple types of previously inaccessible data measures are accompanied with new challenges in characterizing microscope geometry and other error previously ignored in EBSD systems. The foremost of these challenges, when using simulated patterns in high resolution EBSD (HR-EBSD), is the determination of pattern center (the location on the sample from which the EBSD pattern originated) with sufficient accuracy to avoid the introduction of phantom lattice rotations and elastic strain into these highly sensitive measures. This dissertation demonstrates how to greatly improve pattern center determination. It also presents a method for the extraction of grain boundary plane information from single two-dimensional surface scans. These are accomplished through the use of previously un-accessed detail within EBSD images, coupled with physical models of the backscattering phenomena. A software algorithm is detailed and applied for the determination of pattern center with an accuracy of ~0.03% of the phosphor screen width, or ~10µm. This resolution makes it possible to apply a simulated pattern method (developed at BYU) in HR-EBSD, with several important benefits over the original HR-EBSD approach developed by Angus Wilkinson. Experimental work is done on epitaxially-grown silicon and germanium in order to gauge the precision of HR-EBSD with simulated reference patterns using the new pattern center calibration approach. It is found that strain resolution with a calibrated pattern center and simulated reference patterns can be as low as 7x10-4. Finally, Monte Carlo-based models of the electron interaction volume are used in conjunction with pattern-mixing-strength curves of line scans crossing grain boundaries in order to recover 3D grain boundary plane information. Validation of the approach is done using 3D serial scan data and coherent twin boundaries in tantalum and copper. The proposed method for recovery of grain boundary plane orientation exhibits an average error of 3 degrees.
100

Molecular Dynamics Studies of Grain Boundary Mobilities in Metallic and Oxide Fuels

French, Jarin Collins 22 August 2023 (has links)
Energy needs are projected to continue to increase in the coming decades, and with the drive to use more clean energy to combat climate change, nuclear energy is poised to become an important player in the energy portfolio of the world. Due to the unique nature of nuclear energy, it is always vital to have safe and efficient generation of that energy. In current light water reactors, the most common fuel is uranium dioxide (UO2), an oxide ceramic. There is also ongoing research examining uranium-based based metallic fuels, such as uranium-molybdenum (U-Mo) fuels with low uranium (U) enrichment for research reactors as part of a broader effort to combat nuclear proliferation, and uranium-zirconium-based fuels for Generation IV fast reactors. Each nuclear fuel has weaknesses that need to be addressed for safer and more efficient use. Two major challenges of using UO¬2 are the fission gas (e.g. xenon) release and the decreasing thermal conductivity with increasing burnup. In UMo alloys, the major weakness is the breakaway swelling that occurs at high fission densities. The challenges presented by both fuel types are heavily impacted by microstructure, and several studies have identified that the initial microstructure of the fuel in particular (e.g. initial grain size and grain aspect ratio) plays a large role in determining when and how quickly these processes occur. Thus, knowledge of how such initial microstructures evolve is paramount in having stable and predictable fission gas release and thermal conductivity decrease (in UO2) and fuel swelling (in UMo alloys). Mobility is a critical grain boundary (GB) property that impacts microstructural evolution. Existing literature examines GB mobility for a few specific boundaries but does not (in general) identify the anisotropy relationships that this property has. This work first examined the anisotropy in GB mobility, specifically identifying the anisotropy trend for the low-index rotation axes for tilt GBs in BCC γ U, and fluorite UO2 via molecular dynamics simulation. GB mobility is calculated using the shrinking cylindrical grain method, which uses the capillary effect induced by the GB curvature to drive grain growth. The mobilities are calculated for different rotation axes, misorientation angles, and temperatures in these systems. The results indicated that the density of the atomic plane perpendicular to the (tilt) GB plane (which is also perpendicular to the rotation axis) significantly impacts which GB rotation axis has the fastest boundaries. Specifically, the atomic plane that has a higher density tends to have a faster mobility, because it is more efficient for atoms moving across the GB along such planes. For example, for body-centered cubic materials, the <110> tilt GBs are determined to have the fastest mobilities, while face-centered cubic (FCC) and FCC-like structures such as fluorite have <111> tilt GBs as the fastest. Knowledge of GB mobility and its anisotropy in pure materials is helpful as a baseline, but real materials have solutes or impurities (both intentionally and unintentionally) which are known to affect GB mobility by processes such as solute drag and Zener pinning. Additionally, in reactors, nuclear fission can produce many fission products, each of which acts as an additional impurity that will interact with the GB in some way. Because the initial microstructure and its subsequent evolution are vital for addressing the challenges of using nuclear fuel as described above, knowledge of the impacts of these impurities on GB mobility is required. Therefore, this work examined the impact of solutes and impurities on GB mobility and its anisotropy. In particular, the solute effect was examined using the UMo alloy system, while the impurity effect was examined using Xe (a very common fission product) in the γ U, UMo, and UO2 systems. It is found that both Mo and Xe can cause a solute drag effect on GB mobility in the γ U system, with the effect of Xe being stronger than Mo at the same solute/impurity concentration. Xe also causes a solute drag effect in UO2, though the magnitude of the effect is interatomic-potential-dependent. The mobility anisotropy trend was found to disappear at high solute and impurity concentrations in the metallic U and UMo systems but was largely unaffected in the UO2 system. These results not only increase our fundamental understanding of GB mobility, its anisotropy, and solute/impurity drag effects, but also can be used as inputs for mesoscale simulations to examine polycrystalline grain growth with anisotropic GB mobility and in turn examine how the fuel performance parameters change with these properties. / Doctor of Philosophy / Worldwide, energy needs continue to increase each year. Concerns related to climate change have led to an increased emphasis on renewable energies such as solar and wind, but the limitations of these resources prevent them from being the only energy sources. Nuclear energy is uniquely positioned to address several energy concerns: it is clean (no carbon emissions and air pollution), reliable (for example, 24/7 energy production, independent of weather), and energy-dense (one kilogram of fissile uranium provides roughly the same amount of energy as 3000 metric tons of coal). Currently, nuclear energy provides roughly 20% of the energy of the United States, but future predictions show a decrease in the total share of energy generation due to aging systems and a limited number of new reactors being built. The safety and efficacy of existing and future reactors are among the primary concerns for being able to allow nuclear energy to increase its energy share. To determine the safety and efficacy of new reactor designs, a computer simulation tool called fuel performance modeling has been used over the last few decades. This tool requires several material properties as input, one of which is how the nuclear reactor fuel microstructure changes based on a variety of conditions. A significant process contributing to microstructural change is grain growth. Grains (crystallites that make up the whole material) meet at interfaces called grain boundaries (GBs), and these GBs have two properties that largely determine how grain growth occurs: energy and mobility. Significant effort is being put into understanding these properties and their anisotropy, or how they change based on the GB character which is the relative mismatch between the two grains. This work contributes additional understanding of GB mobility anisotropy in two nuclear fuels: uranium dioxide (UO2, the primary fuel in current reactors) and a uranium-molybdenum (UMo) alloy (the primary fuel for newer research reactors). In particular, computer simulation is used to determine GB mobility for several unique GB systems. It is found that for pure nuclear fuels, GB mobility anisotropy is largely determined by which atomic plane has the highest density perpendicular to the GB. When the fuel is no longer pure (through the addition of alloying elements or other impurities) the anisotropy changes significantly in UMo fuels, such that at high concentrations of solute or impurities there is little to no anisotropy, while very little change is observed in the anisotropy in UO2.

Page generated in 0.1128 seconds