Spelling suggestions: "subject:"brain size.""
11 |
Synthesis Effects on Grain Size and Phase Content in the Anatase-Rutile TiO2 SystemFarrell, Kimberly A. 16 August 1999 (has links)
"The phase content and grain size of titanium dioxide often have a strong influence on properties for a variety of applications. In many cases it would be desirable to produce the stable rutile phase with an ultra-fine particle size (<10nm), but most low temperature synthesis methods produce predominantly the metastable anatase phase. The anatase-rutile transformation in TiO2 is known to be affected by dopant type and concentration, as well as the titanium precursor used in solution chemical synthesis. Recently, use of cavitation in the synthesis process has been shown to yield smaller grain size for a variety of oxides. However, the relative importance of these synthesis variables on the grain size and phase content of TiO2 is not well understood. In this study, Taguchi analysis was used to determine the relative effects of dopants (Sn), titanium precursor (butoxide, sulfate, chloride), and cavitation power on grain size and phase content. Precursor residuals were also measured by analytical chemistry. Grain size and phase content results were analyzed statistically to determine whether there is a size dependence of the anatase-rutile transformation. Results show that grain size is strongly dependent on the concentration of chlorine. Absent chlorine, a definite grain size-phase content correlation exists; rutile content increases as grain size decreases. An L-4 orthogonal Taguchi analysis shows chlorine content and tin content as the major influences on the final product. With minimum grain size and maximum rutile content being considered optimal, our best result was 100% rutile and an average grain size of 5nm, which was achieved by acoustic synthesis with 3% tin dopant and low residual chlorine. "
|
12 |
Manufacturihng of heavy rings and large copper canisters by plastic deformationSsemakula, Hamzah January 2003 (has links)
Plastic deformation processes transform material fromas-received state to products meeting certain requirements inproperties, microstructure and shape. To achieve thistransformation, the relationship between material response andprocess conditions should be understood. This is usuallycomplicated by the complex conditions describing the actualprocess. Numerous techniques including empirical, physical,analytical and numerical can be employed. In this thesis, numerical technique supported by lab- andfull-scale experiments has been employed to analyse the formingparameters. The first part of the thesis is focused on the useof such parameters to predict occurrence of material poresduring manufacturing of bearing rings. The second part dealswith the influence of forming parameters on the grain sizeduring fabrication of large copper canisters for encapsulationof nuclear waste. The primary task has been to study with thehelp of commercial FE-codes the magnitude and distribution offorming parameters such as accumulated effective strain,temperature, instantaneous hydrostatic pressure and materialflow at different stages of the forming process. In the firstpart, two types of ring manufacturing routes, which result inpore free and pore loaded rings are studied and compared.Material elements located in different areas of the workpiecehave been traced throughout the process. Results of theaccumulated strain and instant hydrostatic pressure have beenanalysed and presented in pressure-strain space. Itsassumed that high hydrostatic pressures together with higheffective strains are favourable for pore closure. Area of theworkpiece with unfavourable parameters have been identified andcompared with ultrasonic test results. Good agreement has beenobtained. Based on the results of this analysis, a new conceptfor avoiding pores in manufacturing of yet heavier rings hasbeen presented. The concept proposes a lighter upsetting in theinitial stage of the process and a more efficient piercingwhich results in higher hydrostatic pressure and bigger andbetter distributed effective strain. In the second part of the thesis, the influence of formingparameters such as effective strain and temperature on thefinal grain size of the product has been studied in laboratoryscale. As-cast billets of cylindrical shape were extruded atdifferent temperatures and reductions. It has been shown thatthe grain size in the final product should be small in order toenable ultrasonic tests and to guarantee resistance towardscreep and corrosion. Simulations for different materialelements located at different distances from the axis ofsymmetry of the initial cylindrical workpiece have been carriedout. In this way, the parameters describing the deformationhistory of the elements have been determined as functions oftime. Experimentally obtained pre- and post deformation grainsize in the corresponding locations of the material weredetermined. Its concluded that low temperature coupledwith high effective strain are conducive for obtaining a smallgrain size. Based on the beneficial conditions for extrusion ofcopper, a more detailed FE-analysis of a full-scale industrialprocess is carried out. A coarse-grained cast ingot of purecopper is heated and by upset forging formed into a cylinder,which is then punched into a hollow blank for subsequentextrusion. The blank is extruded over a mandrel through a45-degree semi-angle die. Accumulated effective strain andtemperatureas functions of the tubular wall thickness havebeen studied at five different locations along the tubularaxis. Forming load requirement as function of tool displacementfor each stage of the process has been determined. Strain andtemperature levels obtained have been related to the grain sizeinterval obtained in the earlier work. It has been concludedthat the levels reached are within the interval that ensures asmall grain size. A similar analysis has been carried out forforging of large copper lids and bottoms. Die designmodifications to improve the grain size in the lid and tooptimise the forging process with respect to forging load andmaterial yield have been proposed. A method requiring a smallforging load for fabrication of the lids has been analysed <b>Keywords:</b>Pores; grain size; low forging load; effective strain;temperature; hydrostatic pressure; extrusion; forging;canister; lid; rings
|
13 |
Upper slope sedimentation environments in the Gaoping river-sea system of SW TaiwanHansson, Lina January 2013 (has links)
The Gaoping Slope, off the south west coast of Taiwan, is a tectonically active sedimentation environment attaining most of its sediment from the Gaoping River. This study examines sediment cores from two localities at 375 m and 495 m water depth by using X-radiography, Grain size- and 210Pb analysis, with the purpose of comparing the sedimentation environment at the two sites and examine how they were both affected by high sediment delivery during typhoon Morakot.The shallow site has coarse bioturbated sediment, whereas the deeper site had laminated fine sediment containing high amounts of organic material. Both localities display a 13-20 cm thick recently deposited layer in the cores taken after typhoon Morakot. The layers are characterized by coarsening-fining sequences. All cores show cyclicity in the grain size data.We suggest that the shallow station has a more energetic environment, affected by wave reworking, tides, and alongshore currents supplying riverine material from the Gaoping river. The deep site has a calmer sedimentation environment dominated by hemipelagic settling of suspended material. The recent accumulated deposits are most likely hyperpycnites from density driven hyperpycnal flows, originally caused by canyon overflows in the Gaoping- and the Kaohsiung canyon during the typhoon. The strata found at the Gaoping slope is a result of submarine mass transport of sediment, and reflect the interaction between annual seasons and extreme events triggered by typhoons and earthquakes - eroding, transporting, and depositing sediment in the area.
|
14 |
The effect of grain size on the formation of deformation twins in AZ31 alloyTsai, Meng-Shu 11 September 2012 (has links)
Compression tests along the rolling and normal direction of AZ31B plate materials under 10 s strain rate were performed at room temperature to understand the effect of grain size on the formation of deformation twins. When compressed along the rolling direction, tension twins were formed in bands. Within the twin bands, nearly all grains contained tension twins, irrespective of grain size. And outside the bands, no twin was found. Under this deformation condition, grain size has no effect on the formation of tension twins. The reason for this is due to the fact that the formation of a tension twin can trigger the formation of tension twin in the neighboring grain, irrespective of the neighboring grain size.
When compressed along the normal direction, no twin band was formed, and compression twins were formed evenly in the specimens. Under this deformation condition, it was found that the larger the grain size, the higher the fraction of grains which contained compression twins. This result indicates that compression twins are easier to be formed in the large grains.
|
15 |
Variations of Depositional Settings in the South China Sea: Implications Since the Late Neogene SedimentsYang, Sheng-Yuan 28 June 2003 (has links)
Abstract
The South China is the largest marginal sea in the western Pacific. It¡¦s unique geographic settings and high sedimentation rates preserve the paleo- climatic signals with larger amplitude than those from the open ocean. In this study, grain size and elemental compositions of the fine fractions (<63 mm) from the sediments collected by the ODP Leg 184 Sites 1143 and 1146 were analyzed to reconstruct the depositional settings for the last 8 My.
Particle size and elements analyses, in conjunction with the carbonate contents and sedimentation rates from core sediments, reflect the possible increase in precipitation, which was caused by the strengthened summer monsoon between 5 and 3 Ma. In addition to the grain sizes change from silt-domain to clay-domain, Ti/Al ratio of sediments increase while the Si/Al, Zr/Al, and K/Al ratios decrease, which could be related to the enhanced sediments input through rivers. These environmental changes could be attributed to the uplift of Tibet plateau and the formation of Western Pacific Warm Pool. On the contrary, the impact of climate changes is not evident in the loess plateau in the northwestern China. It is likely that the climate in the South China Sea became warm and humid from 5 to 3 Ma were regional changes.
Key words: Grain size, element analyses, South China Sea, summer monsoon
|
16 |
Manufacturihng of heavy rings and large copper canisters by plastic deformationSsemakula, Hamzah January 2003 (has links)
<p>Plastic deformation processes transform material fromas-received state to products meeting certain requirements inproperties, microstructure and shape. To achieve thistransformation, the relationship between material response andprocess conditions should be understood. This is usuallycomplicated by the complex conditions describing the actualprocess. Numerous techniques including empirical, physical,analytical and numerical can be employed.</p><p>In this thesis, numerical technique supported by lab- andfull-scale experiments has been employed to analyse the formingparameters. The first part of the thesis is focused on the useof such parameters to predict occurrence of material poresduring manufacturing of bearing rings. The second part dealswith the influence of forming parameters on the grain sizeduring fabrication of large copper canisters for encapsulationof nuclear waste. The primary task has been to study with thehelp of commercial FE-codes the magnitude and distribution offorming parameters such as accumulated effective strain,temperature, instantaneous hydrostatic pressure and materialflow at different stages of the forming process. In the firstpart, two types of ring manufacturing routes, which result inpore free and pore loaded rings are studied and compared.Material elements located in different areas of the workpiecehave been traced throughout the process. Results of theaccumulated strain and instant hydrostatic pressure have beenanalysed and presented in pressure-strain space. Itsassumed that high hydrostatic pressures together with higheffective strains are favourable for pore closure. Area of theworkpiece with unfavourable parameters have been identified andcompared with ultrasonic test results. Good agreement has beenobtained. Based on the results of this analysis, a new conceptfor avoiding pores in manufacturing of yet heavier rings hasbeen presented. The concept proposes a lighter upsetting in theinitial stage of the process and a more efficient piercingwhich results in higher hydrostatic pressure and bigger andbetter distributed effective strain.</p><p>In the second part of the thesis, the influence of formingparameters such as effective strain and temperature on thefinal grain size of the product has been studied in laboratoryscale. As-cast billets of cylindrical shape were extruded atdifferent temperatures and reductions. It has been shown thatthe grain size in the final product should be small in order toenable ultrasonic tests and to guarantee resistance towardscreep and corrosion. Simulations for different materialelements located at different distances from the axis ofsymmetry of the initial cylindrical workpiece have been carriedout. In this way, the parameters describing the deformationhistory of the elements have been determined as functions oftime. Experimentally obtained pre- and post deformation grainsize in the corresponding locations of the material weredetermined. Its concluded that low temperature coupledwith high effective strain are conducive for obtaining a smallgrain size. Based on the beneficial conditions for extrusion ofcopper, a more detailed FE-analysis of a full-scale industrialprocess is carried out. A coarse-grained cast ingot of purecopper is heated and by upset forging formed into a cylinder,which is then punched into a hollow blank for subsequentextrusion. The blank is extruded over a mandrel through a45-degree semi-angle die. Accumulated effective strain andtemperatureas functions of the tubular wall thickness havebeen studied at five different locations along the tubularaxis. Forming load requirement as function of tool displacementfor each stage of the process has been determined. Strain andtemperature levels obtained have been related to the grain sizeinterval obtained in the earlier work. It has been concludedthat the levels reached are within the interval that ensures asmall grain size. A similar analysis has been carried out forforging of large copper lids and bottoms. Die designmodifications to improve the grain size in the lid and tooptimise the forging process with respect to forging load andmaterial yield have been proposed. A method requiring a smallforging load for fabrication of the lids has been analysed</p><p><b>Keywords:</b><i>Pores; grain size; low forging load; effective strain;temperature; hydrostatic pressure; extrusion; forging;canister; lid; rings</i></p>
|
17 |
Effects of sediment supply and slope on channel topographic roughness and sediment transportAronovitz, Alexander Craig 20 July 2012 (has links)
We investigate evolution of mountain channel morphology and riverbed surface roughness by conducting laboratory experiments. The experimental flume is 4m long by 0.1m wide with a working length of 2.5m. We control initial sediment size distribution, flume slope, water discharge, and sediment feed rate. Measurements include topographic profiles, flow depth, surficial grain-size distribution, sediment transport rate, and sediment size distribution. Experiments begin with a gravel bed of a broad sediment size distribution, at two initial flume slopes: 8.2% and 12.4%. Discharge is held constant until transport rates and topographic changes indicate the system is at near steady state. Coarse sand is then fed into the channel at 1,000 g/min as a means to perturb the system. Sediment feed is held constant until the perturbed bed reach steady-state conditions. The feed is subsequently ceased and measurements continue until sediment transport rates and topography stabilize.
These laboratory experiments provide first-hand observations of channel systems evolving after perturbations. Transport rates decay exponentially following perturbations and remain very low when the channel bed is stabilized. The introduction of coarse sand acts to smooth the channel bed by filling in topographic lows in the 8.2% sloped channel. At a 12.4% slope, increased mobility of sand allows steady state conditions to be met with little smoothing of the bed. The sand also increases the mobility of coarser sediment that was previously stable, likely due to local surface smoothing at grain scale. The increased fraction of surface sand cover maintains increased scouring and mobilization of coarser grains. These post-perturbation mechanisms are interpreted to be responsible for topographic adjustments as the system readjusts towards new steady-state conditions. Surface sorting and transporting distributions reflect high sand fractions well after perturbations have ceased. This suggests that brief pulses of fine sediment can increase coarse sediment mobility for prolonged periods. / text
|
18 |
A novel technique for developing bimodal grain size distributions in low carbon steelsPoole, Warren J., Militzer, Matthias, Azizi-Alizamini, Hamid January 2007 (has links)
In this study a new method is introduced to produce bimodal grain structures in low carbon steels. This method is based on cold rolling of dual phase structures and appropriate annealing treatments. The difference in the recrystallization behaviour of ferrite and martensite yields a heterogeneous microstructure with a distribution of coarse and fine grains. These types of microstructures are of interest for optimizing the balance of strength and uniform elongation in ultra-fine grained low carbon steels.
|
19 |
Seasonal variation and biological effects on mudflat erodibility in the Minas Basin, Bay of FundyCarrière-Garwood, Jessica 12 November 2013 (has links)
The goal of this study was to investigate the effects of intertidal mudflat biofilms on sediment erosion in the Minas Basin of the Bay of Fundy, Canada. From April through November 2012, sediment cores were collected biweekly and eroded using a Gust micro- cosm. Half of the cores were eroded without undergoing prior treatment, while the other half were treated with bleach prior to erosion to destroy biofilms. Size-specific sediment retention by biofilms was evaluated by comparing the disaggregated inorganic grain size (DIGS) distributions of sediment resuspended from untreated and treated cores, while seasonal variation in natural sediment erodibility was assessed by focusing on the mass eroded from untreated cores only. Results show that biofilms preferentially retained clays and very fine silts (< 10 μm), and that overall sediment erodibility decreased from spring to fall. Results also indicate that abundance of the infaunal amphipod Corophium volutator and rainfall increased sediment erodibility.
|
20 |
INVESTIGATION INTO THE SOURCE AND PROGRESSION OF RAILWAY TRACK BALLAST LAYER FOULING MATERIAL FOR THE CN JOLIETTE, QC SUBDIVISIONBAILEY, BRENNAN 27 September 2011 (has links)
Railway track ballast fouling is an ongoing issue without a clear understanding regarding either the cause for generation or the source of the fouling materials. This study was conducted to determine what physical processes are likely causing ballast fouling, where in the track sub-structure fouling material is concentrating, and what factors affect the severity of ballast fouling.
A field investigation on a CN railway track was conducted in Joliette, QC during undercutting maintenance operations. Data for in-situ ballast, sub-ballast, and subgrade samples were gathered from a series of trenches excavated through the track embankment. The geotechnical and mineralogical characteristics of a selected set of ballast samples were gathered through a regime of laboratory testing. Grain size distribution data for the select samples was collected from sieve and hydrometer testing. Three sets of LA abrasion tests were conducted on both in-situ and freshly quarried ballast rock to determine the degradation characteristics of the various ballast types. The petrographic analysis of the sample types was conducted using bulk hand sample characterization, thin-section analysis, and X-Ray Diffraction Analysis.
The petrographic, grain size, and LA abrasion combined analysis indicated that ballast fouling was primarily caused through degradation of the ballast. The fouling material within the ballast pores was sourced to the abraded pieces of ballast that had degraded over time through XRD and grain size distribution analysis. It was found with statistical confidence that ballast layers with harder, structureless rock types have less fouling material form within the ballast void spaces compared to ballast rock types that are soft on the Mohs hardness scale or have planes of weakness due to structural factors. Analysis of the grain size data also showed that ballast fouling was generally concentrated within the section of the ballast layer directly underlying the steel rail, within the topmost parts of the ballast layers. Overall it was recommended that the effects of chemical degradation on ballast rock types and the historical operational duration of ballast be incorporated into future ballast fouling studies. / Thesis (Master, Geological Sciences & Geological Engineering) -- Queen's University, 2011-09-27 10:01:46.141
|
Page generated in 0.0599 seconds