• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A novel technique for developing bimodal grain size distributions in low carbon steels

Poole, Warren J., Militzer, Matthias, Azizi-Alizamini, Hamid January 2007 (has links)
In this study a new method is introduced to produce bimodal grain structures in low carbon steels. This method is based on cold rolling of dual phase structures and appropriate annealing treatments. The difference in the recrystallization behaviour of ferrite and martensite yields a heterogeneous microstructure with a distribution of coarse and fine grains. These types of microstructures are of interest for optimizing the balance of strength and uniform elongation in ultra-fine grained low carbon steels.
2

Estimating Permeability from the Grain-Size Distributions of Natural Sediment

Mastera, Lawrence 08 July 2010 (has links)
No description available.
3

Advanced methods for analysing and modelling multivariate palaeoclimatic time series

Donner, Reik January 2006 (has links)
The separation of natural and anthropogenically caused climatic changes is an important task of contemporary climate research. For this purpose, a detailed knowledge of the natural variability of the climate during warm stages is a necessary prerequisite. Beside model simulations and historical documents, this knowledge is mostly derived from analyses of so-called climatic proxy data like tree rings or sediment as well as ice cores. In order to be able to appropriately interpret such sources of palaeoclimatic information, suitable approaches of statistical modelling as well as methods of time series analysis are necessary, which are applicable to short, noisy, and non-stationary uni- and multivariate data sets. Correlations between different climatic proxy data within one or more climatological archives contain significant information about the climatic change on longer time scales. Based on an appropriate statistical decomposition of such multivariate time series, one may estimate dimensions in terms of the number of significant, linear independent components of the considered data set. In the presented work, a corresponding approach is introduced, critically discussed, and extended with respect to the analysis of palaeoclimatic time series. Temporal variations of the resulting measures allow to derive information about climatic changes. For an example of trace element abundances and grain-size distributions obtained near the Cape Roberts (Eastern Antarctica), it is shown that the variability of the dimensions of the investigated data sets clearly correlates with the Oligocene/Miocene transition about 24 million years before present as well as regional deglaciation events. Grain-size distributions in sediments give information about the predominance of different transportation as well as deposition mechanisms. Finite mixture models may be used to approximate the corresponding distribution functions appropriately. In order to give a complete description of the statistical uncertainty of the parameter estimates in such models, the concept of asymptotic uncertainty distributions is introduced. The relationship with the mutual component overlap as well as with the information missing due to grouping and truncation of the measured data is discussed for a particular geological example. An analysis of a sequence of grain-size distributions obtained in Lake Baikal reveals that there are certain problems accompanying the application of finite mixture models, which cause an extended climatological interpretation of the results to fail. As an appropriate alternative, a linear principal component analysis is used to decompose the data set into suitable fractions whose temporal variability correlates well with the variations of the average solar insolation on millenial to multi-millenial time scales. The abundance of coarse-grained material is obviously related to the annual snow cover, whereas a significant fraction of fine-grained sediments is likely transported from the Taklamakan desert via dust storms in the spring season. / Die Separation natürlicher und anthropogen verursachter Klimaänderungen ist eine bedeutende Aufgabe der heutigen Klimaforschung. Hierzu ist eine detaillierte Kenntnis der natürlichen Klimavariabilität während Warmzeiten unerlässlich. Neben Modellsimulationen und historischen Aufzeichnungen spielt hierfür die Analyse von sogenannten Klima-Stellvertreterdaten eine besondere Rolle, die anhand von Archiven wie Baumringen oder Sediment- und Eisbohrkernen erhoben werden. Um solche Quellen paläoklimatischer Informationen vernünftig interpretieren zu können, werden geeignete statistische Modellierungsansätze sowie Methoden der Zeitreihenanalyse benötigt, die insbesondere auf kurze, verrauschte und instationäre uni- und multivariate Datensätze anwendbar sind. Korrelationen zwischen verschiedenen Stellvertreterdaten eines oder mehrerer klimatologischer Archive enthalten wesentliche Informationen über den Klimawandel auf großen Zeitskalen. Auf der Basis einer geeigneten Zerlegung solcher multivariater Zeitreihen lassen sich Dimensionen schätzen als die Zahl der signifikanten, linear unabhängigen Komponenten des Datensatzes. Ein entsprechender Ansatz wird in der vorliegenden Arbeit vorgestellt, kritisch diskutiert und im Hinblick auf die Analyse von paläoklimatischen Zeitreihen weiterentwickelt. Zeitliche Variationen der entsprechenden Maße erlauben Rückschlüsse auf klimatische Veränderungen. Am Beispiel von Elementhäufigkeiten und Korngrößenverteilungen des Cape-Roberts-Gebietes in der Ostantarktis wird gezeigt, dass die Variabilität der Dimension der untersuchten Datensätze klar mit dem Übergang vom Oligozän zum Miozän vor etwa 24 Millionen Jahren sowie regionalen Abschmelzereignissen korreliert. Korngrößenverteilungen in Sedimenten erlauben Rückschlüsse auf die Dominanz verschiedenen Transport- und Ablagerungsmechanismen. Mit Hilfe von Finite-Mixture-Modellen lassen sich gemessene Verteilungsfunktionen geeignet approximieren. Um die statistische Unsicherheit der Parameterschätzung in solchen Modellen umfassend zu beschreiben, wird das Konzept der asymptotischen Unsicherheitsverteilungen eingeführt. Der Zusammenhang mit dem Überlapp der einzelnen Komponenten und aufgrund des Abschneidens und Binnens der gemessenen Daten verloren gehenden Informationen wird anhand eines geologischen Beispiels diskutiert. Die Analyse einer Sequenz von Korngrößenverteilungen aus dem Baikalsee zeigt, dass bei der Anwendung von Finite-Mixture-Modellen bestimmte Probleme auftreten, die eine umfassende klimatische Interpretation der Ergebnisse verhindern. Stattdessen wird eine lineare Hauptkomponentenanalyse verwendet, um den Datensatz in geeignete Fraktionen zu zerlegen, deren zeitliche Variabilität stark mit den Schwankungen der mittleren Sonneneinstrahlung auf der Zeitskala von Jahrtausenden bis Jahrzehntausenden korreliert. Die Häufigkeit von grobkörnigem Material hängt offenbar mit der jährlichen Schneebedeckung zusammen, während feinkörniges Material möglicherweise zu einem bestimmten Anteil durch Frühjahrsstürme aus der Taklamakan-Wüste herantransportiert wird.
4

The Kozeny-Carman Equation Considered With a Percolation Threshold

Porter, Lee Brenson, II 14 July 2011 (has links)
No description available.
5

The Accuracy of River Bed Sediment Samples

Petrie, John Eric 19 January 1999 (has links)
One of the most important factors that influences a stream's hydraulic and ecological health is the streambed's sediment size distribution. This distribution affects streambed stability, sediment transport rates, and flood levels by defining the roughness of the stream channel. Adverse effects on water quality and wildlife can be expected when excessive fine sediments enter a stream. Many chemicals and toxic materials are transported through streams by binding to fine sediments. Increases in fine sediments also seriously impact the survival of fish species present in the stream. Fine sediments fill tiny spaces between larger particles thereby denying fish embryos the necessary fresh water to survive. Reforestation, constructed wetlands, and slope stabilization are a few management practices typically utilized to reduce the amount of sediment entering a stream. To effectively gauge the success of these techniques, the sediment size distribution of the stream must be monitored. Gravel bed streams are typically stratified vertically, in terms of particle size, in three layers, with each layer having its own distinct grain size distribution. The top two layers of the stream bed, the pavement and subpavement, are the most significant in determining the characteristics of the stream. These top two layers are only as thick as the largest particle size contained within each layer. This vertical stratification by particle size makes it difficult to characterize the grain size distribution of the surface layer. The traditional bulk or volume sampling procedure removes a specified volume of material from the stream bed. However, if the bed exhibits vertical stratification, the volume sample will mix different populations, resulting in inaccurate sample results. To obtain accurate results for the pavement size distribution, a surface oriented sampling technique must be employed. The most common types of surface oriented sampling are grid and areal sampling. Due to limitations in the sampling techniques, grid samples typically truncate the sample at the finer grain sizes, while areal samples typically truncate the sample at the coarser grain sizes. When combined with an analysis technique, either frequency-by-number or frequency-by-weight, the sample results can be represented in terms of a cumulative grain size distribution. However, the results of different sampling and analysis procedures can lead to biased results, which are not equivalent to traditional volume sampling results. Different conversions, dependent on both the sampling and analysis technique, are employed to remove the bias from surface sample results. The topic of the present study is to determine the accuracy of sediment samples obtained by the different sampling techniques. Knowing the accuracy of a sample is imperative if the sample results are to be meaningful. Different methods are discussed for placing confidence intervals on grid sample results based on statistical distributions. The binomial distribution and its approximation with the normal distribution have been suggested for these confidence intervals in previous studies. In this study, the use of the multinomial distribution for these confidence intervals is also explored. The multinomial distribution seems to best represent the grid sampling process. Based on analyses of the different distributions, recommendations are made. Additionally, figures are given to estimate the grid sample size necessary to achieve a required accuracy for each distribution. This type of sample size determination figure is extremely useful when preparing for grid sampling in the field. Accuracy and sample size determination for areal and volume samples present difficulties not encountered with grid sampling. The variability in number of particles contained in the sample coupled with the wide range of particle sizes present make direct statistical analysis impossible. Limited studies have been reported on the necessary volume to sample for gravel deposits. The majority of these studies make recommendations based on empirical results that may not be applicable to different size distributions. Even fewer studies have been published that address the issue of areal sample size. However, using grid sample results as a basis, a technique is presented to estimate the necessary sizes for areal and volume samples. These areal and volume sample sizes are designed to match the accuracy of the original grid sample for a specified grain size percentile of interest. Obtaining grid and areal results with the same accuracy can be useful when considering hybrid samples. A hybrid sample represents a combination of grid and areal sample results that give a final grain size distribution curve that is not truncated. Laboratory experiments were performed on synthetic stream beds to test these theories. The synthetic stream beds were created using both glass beads and natural sediments. Reducing sampling errors and obtaining accurate samples in the field are also briefly discussed. Additionally, recommendations are also made for using the most efficient sampling technique to achieve the required accuracy. / Master of Science

Page generated in 0.0949 seconds