• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] ANÁLISE NUMÉRICA DE MEMBRANAS E BIOMEMBRANAS VISCOELÁSTICAS SUBMETIDAS À EXPANSÃO AXISSIMÉTRICA / [es] ANÁLISIS NUMÉRICA DE MEMBRANAS Y BIOMEMBRANAS VISCOELÁSTICAS SUBMETIDAS A EXPANSIÓN ASIMÉTRICA / [en] NUMERICAL ANALYSIS OF VISCOELASTIC MEMBRANES AND BIOMEMBRANES SUBJECTED TO AXIALLY-SYMMETRIC EXPANSION

CRISTINA DE ABREU ALVIM 26 May 2000 (has links)
[pt] Expansão de tecido é um processo fisiológico, definido como a capacidade de uma membrana biológica aumentar em área superficial devido a uma deformação imposta. É um processo que pode ser induzido artificialmente, através de técnicas ligadas à cirurgia plástica reparadora que têm como objetivo expandir a pele para a sua utilização em áreas danificadas (queimaduras, grandes cicatrizese tatuagens), reconstrução mamária (após mastectomia), entre outras. Para expandir-se a pele artificialmente, implanta-se o expansor sob a camada da pele do paciente, numa região adjacente ao local onde se deseja efetuar a reconstrução. Em seguida, através de um tubo externo, introduz-se um fluido que irá provocar o aumento do volume inicial e, consequentemente, o aumento da área superficial da pele sobre o expansor. Este é um processo lento, feito em etapas, até que se obtenha a área superficial de pele desejada para cada fim. O objetivo desta dissertação é modelar matematicamente o fenômeno da expansão axissimétrica de tecido biológico, através da teoria da viscoelasticidade para grandes deformações. / [en] Tissue expansion is a well-known plastic surgery technique, based on the ability of biologic membranes to increase its surface area when a deformation is imposed. It is used to repair a wound area (scars, burns), to remove tattoos, in breast reconstruction, etc. This involves inserting a silicon-rubber prosthesis (expander) in its collapsed state under the subcutaneous tissue of the patient, closing the incision, and then inflating the expander slowly with a saline fluid through a one way valve. The skin expands in the form of a dome in unison with the balloon underneath it. The purpose of this work is modelling mathematically axially symmetric tissue expansion of biologic tissue, using Theory of Viscoelasticity for Finite Deformations. / [es] La expansión de tejidos es un proceso fisiológico, definido como la capacidad de una membrana biológica de aumentar su área superficial como consequencia de una deformación impuesta. Este proceso, que puede ser inducido artificialmente a través de técnicas de cirurgía plástica reparadora, tiene como objetivo expandir la piel para utilizarla en áreas dañadas (ejemplo: quemaduras o grandes cicatrices), reconstrucción mamaria (después de mastectomía, etc.) Para expandir la piel artificialmente, se implanta el expansor sobre la piel del paciente, en una región adyacente al local donde se desea efectuar la reconstrucción. Enseguida se introduce, a través de un tubo externo, un fluído que provocará el aumento del volumen inicial y, consequentemente, el aumento del área superficial de la piel sobre el expansor. Éste es un proceso lento, que se realiza por etapas hasta obtener la expansión del área superficial deseada, según los fines. El objetivo de esta disertación es modelar matemáticamente el fenómeno de la expansión asimétrica de tejido biológico, a través de la teoría de la viscoelasticidad para grandes deformaciones.
2

Numerical modelling of complex geomechanical problems

Pérez Foguet, Agustí 01 December 2000 (has links)
La tesis se centra en el desarrollo de técnicas numéricas específicas para la resolución de problemas de mecánica de sólidos, tomando como referencia aquellos que involucran geomateriales (suelos, rocas, materiales granulares,...). Concretamente, se tratan los siguientes puntos: 1) formulaciones Arbitrariamente Lagrangianas Eulerianas (ALE) para problemas con grandes desplazamientos del contorno; 2) métodos de resolución para problemas no lineales en el campo de la mecánica de sólidos y 3) modelización del comportamiento mecánico de materiales granulares mediante leyes constitutivas elastoplásticas. Las principales aportaciones de la tesis son: el desarrollo de una formulación ALE para modelos hyperelastoplásticos y el cálculo de operadores tangentes para distintas leyes constitutivas y esquemas de integración temporal no triviales (uso de esquemas de derivación numérica, técnicas de subincrementación y modelos elastoplásticos con endurecimiento y/o reblandecimiento dependientes del trabajo plástico o la densidad). Se presentan diversas aplicaciones que muestran las principales características de los desarrollos presentados (análisis del ensayo del molinete para arcillas blandas, del ensayo triaxial para arenas, de la rotura bajo una cimentación, del proceso de estricción de una barra metálica circular y de un proceso de estampación en frío), dedicando una especial atención a los aspectos computacionales de la resolución de dichos problemas. Por último, se dedica un capítulo específico a la modelización y la simulación numérica de procesos de compactación fría de polvos metálicos y cerámicos. / Numerical modelling of problems involving geomaterials (i.e. soils, rocks, concrete and ceramics) has been an area of active research over the past few decades. This fact is probably due to three main causes: the increasing interest of predicting the material behaviour in practical engineering situations, the great change of computer capabilities and resources, and the growing interaction between computational mechanics, applied mathematics and different engineering fields (concrete, soil mechanics...). This thesis fits within this last multidisciplinary approach. Based on constitutive modelling and applied mathematics and using both languages the numerical simulation of some complex geomechanical problems has been studied.The state of the art regarding experiments, constitutive modelling, and numerical simulations involving geomaterials is very extensive. The thesis focuses in three of the most important and actual ongoing research topics within this framework: 1) the treatment of large boundary displacements by means of Arbitrary Lagrangian-Eulerian (ALE) formulations; 2) the numerical solution of highly nonlinear systems of equations in solid mechanics; and 3) the constitutive modelling of the nonlinear mechanical behaviour of granular materials. The three topics have been analysed and different contributions for each one of them have been developed. Moreover, some of the new developments have been applied to the numerical modelling of cold compaction processes of powders. The process consists in transforming a loose powder into a compacted sample through a large volume reduction. This problem has been chosen as a reference application of the thesis because it involves large boundary displacements, finite deformations and highly nonlinear material behaviour. Therefore, it is a challenging geomechanical problem from a numerical modelling point of view.The most relevant contributions of the thesis are the following: 1) with respect to the treatment of large boundary displacements: quasistatic and dynamic analyses of the vane test for soft materials using a fluid-based ALE formulation and different non-newtonian constitutive laws, and the development of a solid-based ALE formulation for finite strain hyperelastic-plastic models, with applications to isochoric and non-isochoric cases; 2) referent to the solution of nonlinear systems of equations in solid mechanics: the use of simple and robust numerical differentiation schemes for the computation of tangent operators, including examples with several non-trivial elastoplastic constitutive laws, and the development of consistent tangent operators for different substepping time-integration rules, with the application to an adaptive time-integration scheme; and 3) in the field of constitutive modelling of granular materials: the efficient numerical modelling of different problems involving elastoplastic models, including work hardening-softening models for small strain problems and density-dependent hyperelastic-plastic models in a large strain context, and robust and accurate simulations of several powder compaction processes, with detailed analysis of spatial density distributions and verification of the mass conservation principle.

Page generated in 0.1264 seconds