• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 13
  • 12
  • 12
  • 6
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 142
  • 34
  • 26
  • 20
  • 20
  • 19
  • 18
  • 17
  • 15
  • 14
  • 12
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

TAR DNA-Binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1

McDonald, Karli K. 11 1900 (has links)
TDP-43 est une protéine multifonctionnelle possédant des rôles dans la transcription, l'épissage des pré-ARNm, la stabilité et le transport des ARNm. TDP-43 interagit avec d'autres hnRNP, incluant hnRNP A2, via son extrémité C-terminale. Plusieurs membres de la famille des hnRNP étant impliqués dans la réponse au stress cellulaire, alors nous avons émis l’hypothèse que TDP-43 pouvait y participer aussi. Nos résultats démontrent que TDP-43 et hnRNP A2 sont localisés au niveau des granules de stress, à la suite d’un stress oxydatif, d’un choc thermique, et lors de l’exposition à la thapsigargine. TDP-43 contribue à la fois à l'assemblage et au maintien des granules de stress en réponse au stress oxydatif. TDP-43 régule aussi de façon différentielle les composants clés des granules de stress, notamment TIA-1 et G3BP. L'agrégation contrôlée de TIA-1 est perturbée en l'absence de TDP-43. En outre, TDP-43 régule le niveau d`ARNm de G3BP, un facteur de granule de stress de nucléation. La mutation associée à la sclérose latérale amyotrophique, TDP-43R361S, compromet la formation de granules de stress. Ainsi, la fonction cellulaire de TDP-43 s'étend au-delà de l’épissage; TDP-43 est aussi un composant de la réponse cellulaire au stress central et un acteur actif dans le stockage des ARNs. / TDP-43 is a multifunctional protein with roles in transcription, pre-mRNA splicing, mRNA stability and transport. TDP-43 interacts with other hnRNPs, including hnRNP A2, via its C-terminus and several hnRNP family members are involved in the cellular stress response. This relationship led us to investigate the role of TDP-43 in cellular stress. Our results demonstrate that TDP-43 and hnRNP A2 are localized to stress granules, following oxidative stress, heat shock, and exposure to thapsigargin. TDP-43 contributes to both the assembly and maintenance of stress granules in response to oxidative stress and differentially regulates key stress granules components including TIA-1 and G3BP. The controlled aggregation of TIA-1 is disrupted in the absence of TDP-43. In addition, TDP-43 regulates G3BP mRNA levels, a stress granule nucleating factor. A mutation associated with amyotrophic lateral sclerosis, TDP-43R361S, compromises stress granule formation. Thus, the cellular function of TDP-43 extends beyond splicing and places TDP-43 as a participant of the central cellular response to stress and an active player in RNA storage.
22

TAR DNA-Binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1

McDonald, Karli K. 11 1900 (has links)
TDP-43 est une protéine multifonctionnelle possédant des rôles dans la transcription, l'épissage des pré-ARNm, la stabilité et le transport des ARNm. TDP-43 interagit avec d'autres hnRNP, incluant hnRNP A2, via son extrémité C-terminale. Plusieurs membres de la famille des hnRNP étant impliqués dans la réponse au stress cellulaire, alors nous avons émis l’hypothèse que TDP-43 pouvait y participer aussi. Nos résultats démontrent que TDP-43 et hnRNP A2 sont localisés au niveau des granules de stress, à la suite d’un stress oxydatif, d’un choc thermique, et lors de l’exposition à la thapsigargine. TDP-43 contribue à la fois à l'assemblage et au maintien des granules de stress en réponse au stress oxydatif. TDP-43 régule aussi de façon différentielle les composants clés des granules de stress, notamment TIA-1 et G3BP. L'agrégation contrôlée de TIA-1 est perturbée en l'absence de TDP-43. En outre, TDP-43 régule le niveau d`ARNm de G3BP, un facteur de granule de stress de nucléation. La mutation associée à la sclérose latérale amyotrophique, TDP-43R361S, compromet la formation de granules de stress. Ainsi, la fonction cellulaire de TDP-43 s'étend au-delà de l’épissage; TDP-43 est aussi un composant de la réponse cellulaire au stress central et un acteur actif dans le stockage des ARNs. / TDP-43 is a multifunctional protein with roles in transcription, pre-mRNA splicing, mRNA stability and transport. TDP-43 interacts with other hnRNPs, including hnRNP A2, via its C-terminus and several hnRNP family members are involved in the cellular stress response. This relationship led us to investigate the role of TDP-43 in cellular stress. Our results demonstrate that TDP-43 and hnRNP A2 are localized to stress granules, following oxidative stress, heat shock, and exposure to thapsigargin. TDP-43 contributes to both the assembly and maintenance of stress granules in response to oxidative stress and differentially regulates key stress granules components including TIA-1 and G3BP. The controlled aggregation of TIA-1 is disrupted in the absence of TDP-43. In addition, TDP-43 regulates G3BP mRNA levels, a stress granule nucleating factor. A mutation associated with amyotrophic lateral sclerosis, TDP-43R361S, compromises stress granule formation. Thus, the cellular function of TDP-43 extends beyond splicing and places TDP-43 as a participant of the central cellular response to stress and an active player in RNA storage.
23

Úloha translačních elongačních faktorů v dynamice stresových granulí / Role of translational elongation factors in dynamics of stress granules.

Hlaváček, Adam January 2015 (has links)
eIF5A seems to be involved in both, translation initiation and elongation. It was also reported to affect assembly of P-bodies. Given similarities of P-bodies with stress granules (SGs) we decided to test the role of eIF5A in dynamics of heat-induced SGs and its implications for the cell recovery. For the evaluation of eIF5A function in SGs formation was used the temperature- sensitive (ts) mutant eIF5A-3 (C39Y/G118D) cultivated under permissive temperature 25řC and Rpg1-GFP fusion protein as a marker of SGs. The cells were exposed to robust heat shock at 46řC for 10 minutes. The ability of the mutant cells to recover was tested by propidium iodine staining and colony forming units plating. We found that the eIF5A-3 mutant forms heat-induced SGs more loosely aggregated, indicating that the fully functional eIF5A is necessary for SGs assembly. However, it does not seem to affect the rate of SGs dissolution. Survival tests indicate that eIF5A-3 mutant cells are susceptible to dying in a similar way as WT cells; nevertheless, their ability to resume proliferation is significantly better. We also observed a loss of the ts phenotype of the eIF5A-3 mutant. This loss cannot be explained by reversion of mutated eIF5A sequence into normal. Probable cause lies in the adaptive evolution. Our results indicate role of...
24

Role stresových granulí a 4E-BP v teplem stresovaných buňkách S. cerevisiae / The role of stress granules and 4E-BP in heat-stressed cells of S. cerevisiae

Kolářová, Věra January 2016 (has links)
The cells are capable of very quick and specific reactions on stress conditions. Influence of translation, specifically initiation of translation by inhibition factors, is one of the main regulatory process. Two of eIF4E-binding proteins (4E-BP), Eap1p and Caf20p, are known as cap-dependent translation repressors in yeast Saccharomyces cerevisiae. We used in vivo fluorescent microscopy analysis to show different reaction of Caf20p and Eap1p to heat stress. Protein Caf20p does not react on heat shock and stays difused in cytoplasm. Contrary to Caf20p reaction, protein Eap1p accumulates in cytoplasm close to stress granules (SGs). This work shows that Eap1p is involved in stress granules assembly. In the absence of Eap1p, yeast cells react to the heat stress with small and less focused SGs. Dele- tion of CAF20 does not affect SG assembly. This points to specific function of SG in distribution of factors connected with stress reaction. Polysomal analysis shows that deletion of one of initiation translation repressors does not affect heat induced global repression of translation. In permisive condition deletion of EAP1 may cause defect in addition of 60S ribosomal subunits. Absence of protein Eap1p causes morphological defect. That point to a different reactions of Eap1p and Caf20p on heat stress and possible...
25

Regulated protein aggregation: how it takes TIA1 to tangle

Vanderweyde, Tara Elizabeth 08 April 2016 (has links)
The eukaryotic stress response involves translational suppression of non-housekeeping proteins, and the sequestration of unnecessary mRNA transcripts into stress granules (SGs). This process is dependent on mRNA binding proteins (RBPs), such as T- cell intracellular antigen (TIA-1). RBPs interact with unnecessary mRNA transcripts through prion and poly-glutamine like domains, and their aggregation mirrors proteins linked to neurodegenerative diseases. Recent advances in molecular genetics emphasize the importance of SG biology in disease by associating multiple RBPs linked to SGs with neurodegenerative disease. The major difference between SG proteins and aggregation prone proteins in neurodegeneration is that aggregation of SGs is transient and rapidly reverses when the stress is removed. In contrast, aggregates associated with disease are stable and accumulate over time. This study identifies overabundant SGs as a novel pathology in Alzheimer's disease and related tauopathies. The data suggest that TIA-1 is intimately linked to tau pathogenesis, acting as a modifier of tau aggregation and associated toxicity. TIA-1 is present in a protein complex with tau protein including hyper-phosphorylated and misfolded tau. The expression of WT or P301L mutant tau increases the formation and size of TIA-1 positive SGs, and the localization and dynamics of these SGs are altered. Conversely, the expression of TIA-1 increases the formation and stabilization of phospho- and misfolded tau inclusions, as well as visible alterations in microtubule morphology, perhaps reflecting a loss of tau function. The data further show that co-expression of TIA-1 and tau leads to dendrite shortening, increases in caspase cleavage, and apoptosis in primary neurons, suggesting that an interaction between TIA-1 and tau results in neurotoxicity. This toxicity is SG-dependent and is rescued by microtubule stabilizing drugs. The results of this thesis research suggest that the aggregation of tau may proceed through the SG pathway, with SG formation accelerating the pathophysiology of tau aggregation. These studies propose that these tau aggregates serve as a nidus for further accelerated aggregation of SGs, leading to formation of long-lived pathological SG.
26

DNA Binding Activities in Cerebellar Granule Cell Neurons Recognizing the Promoter for The GABA(A)-alpha6 Receptor Subunit

Stock, Rachel E. 22 August 2002 (has links)
"The objective of this thesis project was to begin identifying which regulatory transcription factors are involved in the up-regulation of the gene promoter for the Ą6 subunit of the gamma-alpha-butyric acid (GABAA-Ą6) receptor in cerebellar granule cell neurons (GCNs). Although a 150 base pair sequence proximal to the GABAA-Ą6 gene promoter had been characterized previously using electrophoretic mobility shift assays (EMSAs), the specific transcription factor(s) needed to express the GABAA-Ą6 gene had not been examined. This project utilized EMSAs to investigate this 150 base pair sequence further. It was found that when this sequence proximal to the gene promoter was divided into two overlapping halves, both shortened sequences were able to compete for binding with nuclear extracts. The full-length sequence was further divided into six sub-regions, and double-stranded competitors were generated from synthetic oligonucleotides. The only oligonucleotide to compete was the one that corresponded to the region of overlap between the left and right halves. This overlap region contains consensus sites for OCT-1, STAT, and the regulatory transcription factor NF-1. An NF-1 consensus sequence was able to compete DNA-protein complexes. Supershift assays showed that a xenopus NF-1 antibody, previously shown to compete in gel shift assays, caused a mobility shift of the DNA-probe complex. Analysis of extracts from granule cell neurons, cultured from 0 to 6 days in vitro (DIV) indicated NF-1 to be present all time points. Northern analyses were performed using probes for NF-1A, NF-1B, NF-1C and NF-1X. NF-1A transcripts were observed from 0 to 6 DIV, while NF-1B and NF-1X transcripts were present at 2 and 4 DIV. NF-1C RNA was barely detectable at any time point."
27

Estudo computacional de efeitos de alterações nas condutâncias de canais iônicos sobre a atividade elétrica de modelos morfologicamente realistas de células granulares do giro denteado do hipocampo de ratos / Computational study about effects of ionic conductance alterations on electrical activity of realistic models of dentate gyrus granule cells from rats

Freitas, Josiane da Silva 03 May 2016 (has links)
A ocorrência de status epileticus (SE) desencadeia algumas alterações no sistema nervoso central. O giro denteado (GD) do hipocampo sofre com modificações na expressão gênica dos canais iônicos das células granulares (CGs) e essas células sofrem alterações morfológicas. Essas alterações se manifestam com o brotamento de fibras musgosas, redução no número de espinhas dendríticas, encurtamento e estreitamento da arborização dendrítica. As modificações na expressão gênica dos canais iônicos afetam suas densidades máximas de condutância. Este estudo utilizou 40 modelos computacionais realistas para simular alterações nas condutâncias de canais iônicos e seus efeitos sobre dois grupos de CGs do GD. Os modelos foram construídos com base em reconstruções tridimensionais de 20 CGS com morfologia alterada após SE induzido por pilocarpina (CG-PILO) e 20 de morfologia normal (CG-controle). Foram dotados dos canais iônicos de sódio rápido (Na), canal de potássio de retificação tardia rápido (fKdr), canal de potássio de retificação tardia lento (fKdr), canal de potássio de tipo A (KA), canal de potássio dependente de cálcio e de voltagem de alta condutância (BK), canal de potássio dependente de cálcio de baixa condutância (SK) e canais de cálcio dos tipos T, N e L. As simulações foram realizadas no software Neuron. Foram realizados test t para detectar se ocorre diferenças significativas entre os grupos CG-controle e CG-PILO As alterações nas densidades máximas de condutância provocaram mudanças nos parâmetros de excitabilidade dos grupos CG-PILO e CG- controle, alterando valores de frequência de disparos, reobase e cronaxia. Os grupos apresentam respostas significativamente diferentes para as médias de reobase para a maioria dos valores de densidade máxima de condutância,, porém para cronaxia a maioria dos grupo não apresentou diferenças significativas. O grupo CG-controle apresentou médias maiores de frequência de disparos que o CG-PILO e o grupo CG-PILO apresentou valores de reobase maior para as alterações de densidade de condutância da maioria dos canais, sendo essas diferenças significativas. / The occurrence of status epilepticus (SE) triggers some changes in the central nervous system. The dentate gyrus (DG) of the hippocampus suffers from changes in gene expression of ion channels of granule cells (GCs) and these cells undergo morphological changes. These changes manifest themselves with mossy fiber sprouting, reduction in the number of dendritic spines, shortening and narrowing of dendritic branching. Changes in gene expression of ion channels affect their maximum densities of conductance. This study used 40 realistic computer models to simulate changes in conductance of ion channels and its effect on two groups of CGs of the GD. The models were built based on three-dimensional reconstructions of 20 CGS with morphology changed after pilocarpine-induced SE (CG-PILO) and 20 normal morphology (CG-control). The models were equipped with the ion channels of fast sodium (Na), fast delayed rectifying potassium channel (fKDR), slow delayed rectifying potassium channel (fKdr), potassium channel type A (KA), potassium channel dependent calcium and high voltage conductance (BK), potassium channel dependent calcium low conductance (SK) and the calcium channel types T, N and L. The simulations were performed at Neuron software.T tests were performed to p-values <0.05 for detecting significant differences between the GC-control group and GC-PILO. Changes in maximum densities conductance caused changes in excitability parameters CG-PILO and GC- control groups, by changing frequency values of spikes, rheobase and chronaxie. The groups have significantly different responses to the averages for the most rheobase maximum density values of conductance, but these differences were shortly found for chronaxie values. The CG-control group had higher average frequency of spikes than the CG-PILO group. The CG-PILO group had rheobase values higher for conductance density changes the most channels. These differences are significant.
28

Pointillism in Plant Systems Biology: I. Proteomic Analysis of Plant Exosome-like Particles II. Amyloplast-binding Puroindoline Fusion Proteins for Recombinant Protein Expression.

Greenham, Trevor 24 September 2019 (has links)
Expanding upon our understanding of plant defense is critical, particularly with the perilous threats of climate change and overpopulation to our food security, health and well-being. In this study, we focused on plant defense using two distinct approaches. First, we performed a proteomic analysis of plant exosome-like nanoparticles in order to elucidate their defense related protein cargo. Secondly, we used a wheat antimicrobial protein, puroindoline, as a fusion partner for the expression of recombinant proteins in rice endosperm. Plant exosome-like nanoparticles (ELP) were isolated from fresh tomato and subjected to mass spectrometry (MS) analysis. The ELPs were compared to fresh pressed tomato juice, and the proteins that were significantly upregulated in the ELPs were analyzed for their defensive properties. Bioinformatic analysis identified 30 proteins upregulated in the ELPs, with a majority of these being involved in plant defense. Puroindoline is a protein found in soft wheat varieties. A unique feature of this protein is the presence of a tryptophan-rich domain, which causes it to localize and tether onto starch granule surfaces; a property we are seeking to exploit for recombinant protein isolation. We hypothesized that when expressed in a pin-null crop, such as rice, puroindoline along with its fusion partner will localize and adhere to starch granule surfaces. PIN fusions were expressed in rice, and their subcellular localization was determined by immunolocalization. It was observed that PIN localizes to rice starch ii granules in vitro and in planta, and retains its starch granule binding abilities as a fusion partner. To identify other possible starch granule binding fusion partners, an anhydrous cleavage method was developed that can scan dry biological materials for associated proteins, in this case the starch granule surface. Incubation of our cleavage reagent with isolated rice starch granules yielded several cleavage products as determined through SDS-PAGE. These cleavage products were compared with previous proteomic data of trypsin digested rice starch granules.
29

CONTROLLING PLATELET SECRETION TO MODULATE HEMOSTASIS AND THROMBOSIS

Joshi, Smita 01 January 2018 (has links)
Upon vascular injury, activated blood platelets fuse their granules to the plasma membrane and release cargo to regulate the vascular microenvironment, a dynamic process central to platelet function in many critical processes including hemostasis, thrombosis, immunity, wound healing, angiogenesis etc. This granule- plasma membrane fusion is mediated by a family of membrane proteins- Soluble N-ethyl maleimide Attachment Receptor Proteins(SNAREs). SNAREs that reside on vesicle (v-SNAREs) /Vesicle-Associated Membrane Proteins(VAMPs) interact with target/t-SNAREs forming a trans-bilayer complex that facilitates granule fusion. Though many components of exocytic machinery are identified, it is still not clear how it could be manipulated to prevent occlusive thrombosis without triggering bleeding. My work addresses this question by showing how the rates and extents of granule secretion could be regulated by various v-SNAREs. We also show that the granule cargo decondensation is an intermediate to secretion that also contributes to rates of cargo release. Platelets contain four major VAMP isoforms (-2, -3, -7, and -8), however, VAMP-8 and -7 play a primary role while VAMP-2 and -3 are ancillary in secretion. To exploit this heterogeneity in VAMP usage, platelet-specific V-2/3-/- and V-2/3/8-/- mouse models were generated and characterized to understand how secretion influences hemostasis. We found that each VAMP isoform differentially contributes by altering the rates and extents of cargo release. The loss of VAMP-2 and -3 had a minimal impact while the loss of VAMP-2, -3 and -8 significantly reduced the granule secretion. Platelet activation and aggregation were not affected though the spreading was reduced in V-2/3/8-/- platelets indicating the importance of secretion in spreading. Though coagulation pathways were unaltered, PS exposure was reduced in both V-2/3-/- and V-2/3/8-/- platelets suggesting diminished procoagulant activity. In vivo experiments showed that V-2/3/8-/- animals bled profusely upon tail transaction and failed to form occlusive thrombus upon arterial injury while V-2/3-/- animals did not display any hemostatic deficiency. These data suggest that about 40-50% reduction in secretion provides protection against thrombosis without compromising hemostasis and beyond 50% secretion deficiency, the animals fail to form functional thrombi and exhibit severe bleeding. Additionally, detailed structural analysis of activated platelets suggests that the post-stimulation cargo dissolution depends on an agonist concentration and stimulation duration. This process is VAMP-dependent and represents intermediate steps leading to a full exodus of cargo. Moreover, we also show that VAMP-8 is important for compound fusion events and regulates fusion pore size. This is a first comprehensive report that shows how manipulation of the exocytic machinery have an impact on secretion and ultimately on hemostasis. These animals will be instrumental in future investigations of platelet secretion in many other vascular processes.
30

Effects of Mammalian Target of Rapamycin Inhibition on Circuitry Changes in the Dentate Gyrus of Mice after Focal Brain Injury

Butler, Corwin R. 01 January 2016 (has links)
Post-traumatic epilepsy is a common outcome of severe traumatic brain injury (TBI). The development of spontaneous seizures after traumatic brain injury generally follows a latent period of little to no symptoms. The series of events occurring in this latent period are not well understood. Additionally, there is no current treatment to prevent the development of epilepsy after TBI (i.e. antiepileptogenics). One cell signaling pathway activated in models of TBI and in models of epilepsy is the mammalian target of rapamycin (mTOR). mTOR activity is sustained for weeks after the initial insult in models of TBI, and the inhibition of mTOR using rapamycin has shown promising pre-clinical outcomes in rodent models. This makes rapamycin an ideal therapeutic to test various outcomes associated with epileptogenesis after TBI. The results from this study suggest that rapamycin treatment after controlled cortical impact reduces aberrant axonal sprouting of ipsilateral dentate granule cells, prevents increased neurogenesis in the subgranular zone, and differentially alters phasic and tonic inhibition in dentate granule cells. However, rapamycin treatment did not prevent all forms of axon sprouting in the dentate gyrus or cell loss in selected regions of the hippocampus. Collectively these results support a role of mTOR activity in both excitatory and inhibitory plasticity in the mouse dentate gyrus after TBI.

Page generated in 0.0493 seconds