• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Graphène épitaxié sur SiC : dopage et fonctionnalisation. / Epitaxial graphene on SiC : doping and functionalization

Velez, Emilio 26 September 2014 (has links)
Depuis sa découverte, le graphène a attiré beaucoup d’intérêt et ses propriétés remarquables font de lui un matériau très étudié par la communauté scientifique. Ce travail de thèse porte non pas sur ces propriétés intrinsèques, mais sur les possibilités de dopage et de fonctionnalisation du graphène pour d’éventuelles applications futures. Le choix du graphène épitaxié sur SiC comme matériau de base nous a permis d’avoir des échantillons adaptés aux études spectroscopiques (XPS, ARPES, NEXAFS) effectuées au synchrotron SOLEIL. Ces études sont indispensables pour la caractérisation macroscopique du graphène dopé et fonctionnalisé. La croissance epitaxiale permet à la fois le dopage in-situ et ex-situ. Dans un premier temps nous avons étudié l’influence de l’azote, élément voisin du carbone. Nous avons opté pour une technique de dopage in-situ, ce qui nous a permis d’avoir du graphène dopé dans un seul et même processus de fabrication. De plus nous avons pu déterminer les conditions de croissance pour obtenir une couche de nitrure de silicium (Si3N4) entre le graphène et le substrat. D’autre part nous avons utilisé l’oxygène pour fonctionnaliser le graphène. En exposant le graphène vierge à l’oxygène atomique et moléculaire, on a pu étudier l’évolution des états vide du graphène en présence d’oxygène. Les bords des grains de graphène sont particulièrement adaptés pour la fonctionnalisation à cause de leur activité chimique. Nous avons ainsi synthétisé du graphène avec des grains de petites dimension (~100 nm) pour avoir une forte densité de bords dans l’échantillon. De cette manière nous avons pu détecter, par absorption des rayons X, la signature de ces états de bord. / Since its discovery, graphene has attracted tremendous interest and its remarkable properties make it a material intensively studied by the scientific community. This thesis is not directly concerned with its intrinsic properties, but the possibilities of doping and functionalization of graphene for future possible applications and devices. The choice of epitaxial graphene on SiC as basic material allowed us to have samples well adapted for spectroscopic studies (XPS, ARPES and NEXAFS) carried out on a synchrotron facility (SOLEIL). These studies are essential for the macroscopic characterization of doped graphene and its functionalization. Epitaxial growth provides us the possibility to dope graphene both in-situ and ex-situ. We first opted for an in-situ doping technique studying the influence of nitrogen as a chemical dopant on the growth process. This allowed us to fabricate doped graphene in a one-step process. By tuning the parameters for epitaxial growth the creation of a silicon nitride layer was also observed. We also used atomic and molecular oxygen for the functionalization of graphene. By exposing pristine graphene to oxygen in an ex-situ process, we were able to study the evolution of empty states of graphene and the consequences on the electronic structure. The edges of graphene crystallites are particularly adapted for functionalization because of their chemical activity. The epitaxial growth on a 3C-SiC substrate allowed us to synthesize graphene with a reduced lateral size (~100 nm) and to have a higher density of edges in our sample. In this way we were able to detect the signature of these edge states using non-local spectroscopic methods.
2

Vers de nouveaux matériaux hybrides à base de graphène épitaxié: contrôle de la formation de défauts et leur rôle dans l'intercalation

Kimouche, Amina 20 November 2013 (has links) (PDF)
Le graphène épitaxié sur des substrats métalliques est un modèle prometteur pour le développement de nouveaux systèmes hybrides, dans lesquelles les effets d'interface peuvent être exploités pour concevoir de nouvelles propriétés. L'insertion d'espèces entre le graphène et son substrat, une opération connues sous le nom d'-"intercalation", est une approche très puissante à cet égard. Avec l'aide des outils de la physique des surfaces, nous avons étudié trois systèmes graphène/métal, dont deux sont des systèmes hybrides intercalés, et l'autre est un candidat pour un tel système : (i) le graphène/Ir(111) intercalé avec un oxyde ultra-mince, (ii) graphène/Ir(111) intercalé avec des couches sub-atomiques du cobalt et (iii) de graphène sur Re(0001). Nous avons montré que certains défauts, en particulier les ridules (délamination du graphène de son substrat) et d'autres régions courbées du graphène, jouent un rôle crucial, non anticipé, dans le processus d'intercalation. Nous avons également observé que l'intercalation se déroule d'une manière nettement différente sous ultravide et à pression atmosphérique. Dans le premier système, des espèces contenant de l'oxygène entrent à l'extrémité ouverte des ridules et diffusent au long de ces ridules pour former des nano-rubans d'oxyde. Ces rubans modifient le dopage électronique du graphène, ce qui se traduit également par des changements substantiels dans la réponse optique inélastique (Raman) du graphène. Dans le second système, l'efficacité de l'intercalation est apparue dépendante de l'interaction graphène-métal, laquelle varie entre les domaines de graphène orientés différemment sur_(111). Dans ce système, les sites d'entrée pour les espèces intercalées, des régions courbées dans le graphène, ont pu être identifiés grâce à l'observation in_operando (en cours de croissance) du processus. Enfin, la croissance de graphène dans un troisième système (graphène/Re(0001)), a été étudiée afin de permettre le développement de futurs systèmes graphène/Re hybrides supraconducteurs. Dans ce système, nous avons proposé deux voies de croissance, l'une étant basé sur un processus de croissance en surface d'un monocristal massif de Re(0001), l'autre reposant sur la ségrégation en surface, activée thermiquement, du carbone dissout à haute température dans des films minces de Re sur saphir.
3

Etudes des propriétés de transport de mono et de multicouches de graphène épitaxiées sur sic / Study of transport properties of single and multilayers of epitaxial graphene on SiC

Jabakhanji, Bilal 28 September 2012 (has links)
Nous présentons dans ce travail la caractérisation, essentiellement en transport, de couches de graphène épitaxiés élaborées par sublimation contrôlée de carbure de silicium (SiC). Des mesures de transport électroniques sont effectuées à basse température (T~1,6 K) et à fort champ magnétique. Dans une première partie, Il est indispensable de se focaliser sur la méthode spécifique (‘graphite cap') utilisée pour la fabrication de tous les échantillons étudiés dans ce travail au CNM, Barcelone. La méthode de ‘graphite cap' permet d'obtenir des couches de graphène en formes de rubans suffisamment isolés entre eux pour la fabrication de dispositifs électroniques. La croissance de graphène donne des résultats très différents suivant les conditions de croissance et les spécificités du substrat de carbure de silicium employé : les échantillons obtenus sur face carbone, et les échantillons sur face silicium.Sur face carbone, deux polytypes de SiC ont été utilisés pour l'élaboration de graphène : (i) sur le polytype ‘6H-SiC (on axis)', des rubans de graphène de l'ordre de 600 µm de longueur et de 6 µm de largeur sont obtenus. La largeur de graphène reste faible car le graphène suit la formation des marches sur le SiC résultant de la reconstruction de la surface pendant la croissance (‘step bunching'). Des monocouches ont été identifiées par spectroscopie Raman. Les résultats de transport sur ces monocouches montrent que la concentration de porteurs, de type trous, varie entre 5x1012cm-2 et 5x1013cm-2. L'effet Hall quantique n'est pas observé à cause du dopage élevé. Mais des oscillations de Shubnikov de Haas ont été bien résolues et étudiées pour extraire leurs phases. La phase des oscillations est égale à zéro, ce qui est une signature de la présence d'une monocouche de graphène.(ii) sur le polytype ‘4H-SiC (8° off axis)', les rubans obtenus sont plus larges et peuvent atteindre une longueur de 600 µm et une largeur de 50 µm. L'utilisation d'un substrat SiC avec une désorientation intentionnelle lors du clivage de la surface initiale permet la coalescence des rubans de graphène. Les résultats de transport sur les monocouches montrent que les porteurs sont toujours de type trous, mais beaucoup moins dopé sur plusieurs monocouches (de l'ordre 8x1011cm-2). L'effet Hall quantique est reporté sur un échantillon dont la mobilité atteint 11 000 cm²/V.s. Une étude à bas champ magnétique est encore réalisée et donnent des informations intéressantes sur l'(anti)localisation faible. Tous les phénomènes quantiques observés sont des signatures sur les propriétés intrinsèques des monocouches de graphène. Pour mieux appréhender le graphène épitaxié, il est important de faire varier la concentration de porteurs. Pour cela, une autre approche est proposée. Nous avons fabriqué une face arrière d'un échantillon semi-isolant par implantation d'ions d'azotes dans le SiC avant la croissance de graphène. Les résultats de transport obtenus sur les monocouches de graphène ont montré l'efficacité de cette grille pour contrôler le type de porteurs. L'effet Hall quantique a été observé pour les deux types de porteurs avec des plateaux de Hall remarquables en largeur (23 T).Sur la face Si, des multicouches de graphène couvrent uniformément toute la surface du substrat. Les multicouches de graphène sont plus épaisses sur les bords de marches que sur les terrasses, identifiées par spectroscopie Raman. Les porteurs sont maintenant de type électrons grâce à la couche de tampon qui existe sur la face Si. Les résultats de transport en champ magnétique et à basse température détectent l'existence d'une anisotropie électrique dues principalement aux marches du substrat SiC. / In this work, we present the characterization, mainly in transport, of epitaxial graphene layers produced by controlled sublimation of silicon carbide substrate (SiC). Electronic transport measurements are performed at low temperature (T ~ 1.6 K) and high magnetic field. In the first part, we explain the specific method ('graphite cap') used for growth of the samples studied in this work at CNM, Barcelona. The method of 'graphite cap' provides graphene ribbons homogeneous and isolated for the fabrication of electronic devices.Graphene on SiC gives very different results depending on the conditions of growth (temperature, pressure…) and the face of SiC substrate used: carbon face (C-face) or silicon face (Si-face).On the carbon face, two SiC polytypes have been used for the graphene growth:(i) On axis 6H-SiC: graphene ribbons are obtained on the whole surface. The length of ribbon approaches 600 µm and the width do not exceed 6 µm. The graphene follows the formation of steps on the SiC resulting from surface reconstruction during growth (‘step bunching'), which affects the graphene width. Monolayers were identified by Raman spectroscopy. For all measured samples, we found that the graphene is p-typed doped with a Hall concentration between 5x1012 and 5x1013cm-2. The quantum Hall effect is not observed because of the high doping level. But the Shubnikov de Haas oscillations (SdH) have been well resolved and studied. The phase of the oscillations is equal to zero, which is a signature from the presence of graphene monolayer.(ii) 8° off axis 4H-SiC: graphene ribbons obtained are larger and can reach a length of 600 µm and a width of 50 µm. The use of a SiC substrate with intentional disorientation upon cleavage of the initial surface allows the coalescence of the graphene ribbons. For all measured devices on this sample, we found that the graphene is p-typed doped (as determined from the sign of the Hall effect) with a Hall concentration between 8x1011 and 1013 cm-2. Mobilities varied between 1000 and 11000 cm²/Vs from device to device at 4K. Magnetoresistance revealed both Shubnikov-de Haas (SdH) oscillations, and interference phenomena (weak localization and antilocalization). For some low doped devices, Quantum Hall effect was observed. All quantum phenomena observed are signatures on the intrinsic properties of graphene monolayers.The main drawback of the epitaxial growth technique is the difficulty to control of the carrier density. Here, we investigate a bottom gate of a graphene device, epitaxially grown on the C-face of SiC substrate. The gate was realized by Nitrogen atoms implantation in the SiC crystal. The transport measurements have shown the effectiveness of the gate to control the type of carriers. The quantum Hall effect was observed for both types of carriers with remarkable Hall plateaus width (23 T).On the silicon face, we discuss results obtained from few layer graphene (FLG) grown epitaxially on the (0001) surface of a 6H-SiC substrate. Carriers are now like electrons through the buffer layer that exists on the Si face. The resulting FLG uniformly covers the substrate on which large step bunched terraces are also visible. The FLG is thicker at the step edges, as evidenced by micro-Raman analysis. Indeed, a noticeable anisotropy of the resistance has been detected by magnetotransport measurements at low temperature and high magnetic field. We will argue that this anisotropy originates from different mobilities, in the terraces and at the step edges.
4

Spectroscopie tunnel de graphène épitaxié sur du rhénium supraconducteur / Scanning tunneling spectroscopy study of epitaxial graphene on superconducting rhenium

Tonnoir, Charlène 20 December 2013 (has links)
Obtenir une interface transparente entre le graphène et un supraconducteur s'est révélé être difficile et pourtant essentiel pour induire des corrélations supraconductrices dans le graphène par effet de proximité. Cette thèse présente une étude par spectroscopie tunnel (STS) à très basse température (50 mK) d'un système nouveau qui réalise ce bon couplage électronique en faisant croitre du graphène par épitaxie sur du rhénium supraconducteur. La fabrication et sélection des films minces de rhénium de haute qualité cristalline sont brièvement expliquées, suivies par le procédé de croissance CVD du graphène sur divers métaux et en particulier sur du rhénium. Les images topographiques obtenues par STM révèlent un moiré qui résulte de la différence de paramètre de maille entre le graphène et le rhénium. Nous identifions ce système à une monocouche de graphène en forte interaction avec le substrat, résultat corroboré par des calculs DFT. Des analyses STS dans une gamme d'énergie de plusieurs centaines de meV montrent une modulation spatiale de la densité d'états (DOS) à l'échelle du moiré, indiquant différentes forces de couplage entre les ‘collines' et les ‘vallées' du moiré. Les propriétés supraconductrices de l'échantillon en volume sont sondées par des mesures de transport, desquelles nous extrayons la température de transition Tc~2K et la longueur de cohérence supraconductrice ξ=18nm. Le gap supraconducteur est extrait de la DOS mesurée par STS à 50 mK (Δ=330µeV) et trouvé homogène à l'échelle du moiré. L'état mixte supraconducteur est étudié sous champ magnétique et un réseau de vortex d'Abrikosov est mis à jour. Enfin, une étude sur diverses morphologies de surface présente un effet de proximité supraconducteur latéral anormal, en contradiction avec les modèles existants. / Obtaining a transparent interface between graphene and a superconductor has proved to be very challenging and yet essential to induce superconducting correlations in graphene via the so-called proximity effect. This thesis presents a scanning tunneling spectroscopy (STS) study at very low temperature (50 mK) of a novel system achieving such a good electronic contact by the growth of epitaxial graphene on superconducting rhenium. The fabrication and selection of high-crystallographic quality rhenium thin films are briefly explained, followed by the CVD growth process of graphene on various metal substrates and in particular rhenium. STM topographic images reveal a moiré pattern due to the lattice mismatch between graphene and rhenium. We identify this system to a graphene monolayer in strong interaction with the underlying substrate, as corroborated by DFT calculations. STS analyses in the hundreds-meV energy range show a spatial modulation of the density of states (DOS) at the moiré scale, indicating different coupling strengths between ‘hills' and ‘valleys' regions. The bulk superconducting properties are probed by transport measurements, from which we extract the transition temperature Tc~2K and a superconducting coherence length ξ=18nm. The superconducting gap is extracted from the DOS at 50 mK (Δ=330µeV) and found homogeneous at the moiré scale. The superconducting mixed state is studied under magnetic field and an Abrikosov vortex-lattice is uncovered. Finally, a study on various surface morphologies exhibits an anomalous lateral superconducting proximity effect in contradiction with the existing models.
5

Epitaxial Graphene Functionalization : Covalent grafting of molecules, Terbium intercalation and Defect engineering / Fonctionnalisation de graphene epitaxie : Greffage covalent de molécules, intercalation de terbiu, ingénieurie de défauts

Daukiya, Lakshya 21 October 2016 (has links)
Le premier chapitre de cette thèse présente l’intérêt et la problématique de la fonctionnalisation du graphène. L’état de l’art actuel de cette thématique est présenté. Dans un deuxième chapitre, nous discutons de façon détaillée des techniques expérimentales. Le chapitre 3 est centré sur la modification du graphène par réaction de cycloaddition par molécules dérivées de maleimides. Dans cette étude, nous démontrons le greffage covalent de molécules sur graphène épitaxié sans défaut sur SiC, ainsi qu’une tendance d’ouverture de bande interdite à l’aide de caractérisations par spectroscopie Raman, XPS, ARPS et STM. L’augmentation du rapport ID /IG des pics Raman et des liaisons sp3 sur l’échantillon en fonction de la durée de réaction chimique confirme le greffage. Par analogie avec les bords de marche de type « zigzag » ou « armchair », l’étude des ondes de densité de charge générées sur le graphène par les molécules permet de déterminer la nature des sous-réseaux mis en jeu lors du greffage. Dans le chapitre 4, nous étudions l’intercalation du terbium dans le graphène épitaxié. Après intercalation, l’ARPES montre une structure de bande complexe dont une composante correspond à une monocouche de graphène fortement dopée n. Nous avons pu isoler cette composante et montrer qu’elle provient du découplage de la couche tampon du substrat par le Terbium. Ces résultats sont confirmés par les données XPS. Le graphène avec Terbium intercalé produit également un réseau de lignes visibles par imagerie STM, qui a l’échelle atomique à basse tension montrent les 6 atomes de carbone de la structure en nid d’abeille, confirmant ainsi la transformation de la couche tampon en graphène. / The first chapter of this thesis explains the general motivation and problematic of graphene functionalization. It presents the state of the art of current research in this field. In the second chapter we discuss the experimental techniques in detail. Chapter 3 of this thesis work focuses on covalent modification of graphene by cycloaddition reaction of maleimide derivative molecules. In these studies we have confirmed the grafting of molecules on epitaxial defect free graphene on SiC and a tendency to open a gap with the help of Raman spectroscopy, XPS, ARPES and STM studies. An increase in the ID /IG ratio for Raman signature and sp3 bonding on the sample with increasing reaction time confirmed the reaction of molecules. By drawing an analogy with the standing waves obtained on armchair step edges of graphene and standing waves generated by molecules it was possible to determine the location of grafted molecules on the graphene lattice. In chapter 4, studies on terbium intercalation of epitaxial graphene are discussed. After intercalation a complex band structure was observed by ARPES with one spectra corresponding to highly n-doped graphene monolayer. We were able to isolate this highly n-doped graphene and confirmed its origin from decoupling of buffer layer and making it graphene like. These results are also supported by the XPS data. STM images on Terbium intercalated on buffer layer samples showed an interesting pattern of lines, atomic resolution scans at low bias voltage on these lines showed 6 atoms of hexagon confirming the transformation of buffer layer into graphene layer.

Page generated in 0.0754 seconds