• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • Tagged with
  • 20
  • 20
  • 10
  • 9
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Uma metodologia de modelagem de sistemas computacionais baseada em gramáticas de grafos

Pretz, Eduardo January 2000 (has links)
Vários métodos de especificação procuram realizar a modelagem de sistemas sob três visões: uma visão funcional, que procura apresentar as informações que trafegam entre os diversos componentes do sistema, uma visão de dados, que apresenta as relações entre as estruturas de dados estáticas do sistema e a visão dinâmica, que mostra as transformações que o sistema pode sofrer ao longo do tempo. Alguns modelos procuram integrar mais de uma visão, mas, em geral, os modelos possuem sérias deficiências ao tentarem representar mais de um aspecto do sistema ao mesmo tempo, sendo necessário o apoio de outros métodos. Este trabalho apresenta um método de especificação de sistemas que procura integrar a modelagem de dados com a modelagem funcional e dinâmica utilizando-se, para isso, das Gramáticas de Grafos como método formal de especificação. Sendo um grafo formado por vértices, arestas e rótulos, pode-se facilmente criar uma camada de abstração em que o usuário (em geral responsável pela análise de sistemas) manipule um método de especificação com o qual já convive, agora com uma semântica formal definida. Espera-se, com a aplicação do método, gerar modelos passíveis de prova, não ambíguos e que promovam um incremento de qualidade no sistema gerado. / Several specification methods try to realize system modeling following three visions: the functional vision, which is based on representing the information exchange among the several components of the system; the data vision, which represents the relations among the static data structures of the system; and the dynamic vision, which presents the transformations the system may endure over the time. Some models exist that try to integrate more than one of these visions, but, in general, they suffer from deficiencies when trying to represent more than one aspect of the system at the same time, in which case the use of other methods is necessary. This work presents a novel method of systems specification that attempts to integrate data modeling with functional and dynamic modelings using, for this, Graph Grammars as its formal specification method. A graph, being made of nodes, edges and labels, is appropriate for creating, easily, an abstraction layer in which the user (usually responsible for the system analysis) manipulates a specification method which is known to him, but now with a well defined formal semantics. We hope, by applying this method, to generate provable, unambiguous models which promote an increase in the quality of the generated system.
12

3D reconfiguration using graph grammars for modular robotics

Pickem, Daniel 16 December 2011 (has links)
The objective of this thesis is to develop a method for the reconfiguration of three-dimensional modular robots. A modular robot is composed of simple individual building blocks or modules. Each of these modules needs to be controlled and actuated individually in order to make the robot perform useful tasks. The presented method allows us to reconfigure arbitrary initial configurations of modules into any pre-specified target configuration by using graph grammar rules that rely on local information only. Local in a sense that each module needs just information from neighboring modules in order to decide its next reconfiguration step. The advantage of this approach is that the modules do not need global knowledge about the whole configuration. We propose a two stage reconfiguration process composed of a centralized planning stage and a decentralized, rule-based reconfiguration stage. In the first stage, paths are planned for each module and then rewritten into a ruleset, also called a graph grammar. Global knowledge about the configuration is available to the planner. In stage two, these rules are applied in a decentralized fashion by each node individually and with local knowledge only. Each module can check the ruleset for applicable rules in parallel. This approach has been implemented in Matlab and currently, we are able to generate rulesets for arbitrary homogeneous input configurations.
13

Graph compression using graph grammars

Peternek, Fabian Hans Adolf January 2018 (has links)
This thesis presents work done on compressed graph representations via hyperedge replacement grammars. It comprises two main parts. Firstly the RePair compression scheme, known for strings and trees, is generalized to graphs using graph grammars. Given an object, the scheme produces a small context-free grammar generating the object (called a “straight-line grammar”). The theoretical foundations of this generalization are presented, followed by a description of a prototype implementation. This implementation is then evaluated on real-world and synthetic graphs. The experiments show that several graphs can be compressed stronger by the new method, than by current state-of-the-art approaches. The second part considers algorithmic questions of straight-line graph grammars. Two algorithms are presented to traverse the graph represented by such a grammar. Both algorithms have advantages and disadvantages: the first one works with any grammar but its runtime per traversal step is dependent on the input grammar. The second algorithm only needs constant time per traversal step, but works for a restricted class of grammars and requires quadratic preprocessing time and space. Finally speed-up algorithms are considered. These are algorithms that can decide specific problems in time depending only on the size of the compressed representation, and might thus be faster than a traditional algorithm would on the decompressed structure. The idea of such algorithms is to reuse computation already done for the rules of the grammar. The possible speed-ups achieved this way is proportional to the compression ratio of the grammar. The main results here are a method to answer “regular path queries”, and to decide whether two grammars generate isomorphic trees.
14

Uma metodologia de modelagem de sistemas computacionais baseada em gramáticas de grafos

Pretz, Eduardo January 2000 (has links)
Vários métodos de especificação procuram realizar a modelagem de sistemas sob três visões: uma visão funcional, que procura apresentar as informações que trafegam entre os diversos componentes do sistema, uma visão de dados, que apresenta as relações entre as estruturas de dados estáticas do sistema e a visão dinâmica, que mostra as transformações que o sistema pode sofrer ao longo do tempo. Alguns modelos procuram integrar mais de uma visão, mas, em geral, os modelos possuem sérias deficiências ao tentarem representar mais de um aspecto do sistema ao mesmo tempo, sendo necessário o apoio de outros métodos. Este trabalho apresenta um método de especificação de sistemas que procura integrar a modelagem de dados com a modelagem funcional e dinâmica utilizando-se, para isso, das Gramáticas de Grafos como método formal de especificação. Sendo um grafo formado por vértices, arestas e rótulos, pode-se facilmente criar uma camada de abstração em que o usuário (em geral responsável pela análise de sistemas) manipule um método de especificação com o qual já convive, agora com uma semântica formal definida. Espera-se, com a aplicação do método, gerar modelos passíveis de prova, não ambíguos e que promovam um incremento de qualidade no sistema gerado. / Several specification methods try to realize system modeling following three visions: the functional vision, which is based on representing the information exchange among the several components of the system; the data vision, which represents the relations among the static data structures of the system; and the dynamic vision, which presents the transformations the system may endure over the time. Some models exist that try to integrate more than one of these visions, but, in general, they suffer from deficiencies when trying to represent more than one aspect of the system at the same time, in which case the use of other methods is necessary. This work presents a novel method of systems specification that attempts to integrate data modeling with functional and dynamic modelings using, for this, Graph Grammars as its formal specification method. A graph, being made of nodes, edges and labels, is appropriate for creating, easily, an abstraction layer in which the user (usually responsible for the system analysis) manipulates a specification method which is known to him, but now with a well defined formal semantics. We hope, by applying this method, to generate provable, unambiguous models which promote an increase in the quality of the generated system.
15

Uma metodologia de modelagem de sistemas computacionais baseada em gramáticas de grafos

Pretz, Eduardo January 2000 (has links)
Vários métodos de especificação procuram realizar a modelagem de sistemas sob três visões: uma visão funcional, que procura apresentar as informações que trafegam entre os diversos componentes do sistema, uma visão de dados, que apresenta as relações entre as estruturas de dados estáticas do sistema e a visão dinâmica, que mostra as transformações que o sistema pode sofrer ao longo do tempo. Alguns modelos procuram integrar mais de uma visão, mas, em geral, os modelos possuem sérias deficiências ao tentarem representar mais de um aspecto do sistema ao mesmo tempo, sendo necessário o apoio de outros métodos. Este trabalho apresenta um método de especificação de sistemas que procura integrar a modelagem de dados com a modelagem funcional e dinâmica utilizando-se, para isso, das Gramáticas de Grafos como método formal de especificação. Sendo um grafo formado por vértices, arestas e rótulos, pode-se facilmente criar uma camada de abstração em que o usuário (em geral responsável pela análise de sistemas) manipule um método de especificação com o qual já convive, agora com uma semântica formal definida. Espera-se, com a aplicação do método, gerar modelos passíveis de prova, não ambíguos e que promovam um incremento de qualidade no sistema gerado. / Several specification methods try to realize system modeling following three visions: the functional vision, which is based on representing the information exchange among the several components of the system; the data vision, which represents the relations among the static data structures of the system; and the dynamic vision, which presents the transformations the system may endure over the time. Some models exist that try to integrate more than one of these visions, but, in general, they suffer from deficiencies when trying to represent more than one aspect of the system at the same time, in which case the use of other methods is necessary. This work presents a novel method of systems specification that attempts to integrate data modeling with functional and dynamic modelings using, for this, Graph Grammars as its formal specification method. A graph, being made of nodes, edges and labels, is appropriate for creating, easily, an abstraction layer in which the user (usually responsible for the system analysis) manipulates a specification method which is known to him, but now with a well defined formal semantics. We hope, by applying this method, to generate provable, unambiguous models which promote an increase in the quality of the generated system.
16

A mathematical basis for medication prescriptions and adherence

Diemert, Simon 25 August 2017 (has links)
Medication prescriptions constitute an important type of clinical intervention. Medication adherence is the degree to which a patient consumes their medication as agreed upon with a prescriber. Despite many years of research, medication non-adherence continues to be a problem of note, partially due to its multi-faceted in nature. Numerous interventions have attempted to improve adherence but none have emerged as definitive. A significant sub-problem is the lack of consensus regarding definitions and measurement of adherence. Several recent reviews indicate that discrepancies in definitions, measurement techniques, and study methodologies make it impossible to draw strong conclusions via meta-analyses of the literature. Technological interventions aimed at improving adherence have been the subject of ongoing research. Due to the increasing prevalence of the Internet of Things, technology can be used to provide a continuous stream of data regarding a patient's behaviour. To date, several researchers have proposed interventions that leverage data from the Internet of Things, however none have established an acceptable means of analyzing and acting upon this wealth of data. This thesis introduces a computational definition for adherence that can be used to support continued development of technological adherence interventions. A central part of the proposed definition is a formal language for specifying prescriptions that uses fuzzy set theory to accommodate imprecise concepts commonly found in natural language medication prescriptions. A prescription specified in this language can be transformed into an evaluation function which can be used to score the adherence of a given medication taking behaviour. Additionally, the evaluator function is applied to the problem of scheduling medication administrations. A compiler for the proposed language was implemented and had its breadth of expression and clinical accuracy evaluated. The results indicate that the proposed computational definition of adherence is acceptable as a proof of concept and merits further works. / Graduate
17

Efficient model synchronization of large-scale models

Giese, Holger, Hildebrandt, Stephan January 2009 (has links)
Model-driven software development requires techniques to consistently propagate modifications between different related models to realize its full potential. For large-scale models, efficiency is essential in this respect. In this paper, we present an improved model synchronization algorithm based on triple graph grammars that is highly efficient and, therefore, can also synchronize large-scale models sufficiently fast. We can show, that the overall algorithm has optimal complexity if it is dominating the rule matching and further present extensive measurements that show the efficiency of the presented model transformation and synchronization technique. / Die Model-getriebene Softwareentwicklung benötigt Techniken zur Übertragung von Änderungen zwischen verschiedenen zusammenhängenden Modellen, um vollständig nutzbar zu sein. Bei großen Modellen spielt hier die Effizienz eine entscheidende Rolle. In diesem Bericht stellen wir einen verbesserten Modellsynchronisationsalgorithmus vor, der auf Tripel-Graph-Grammatiken basiert. Dieser arbeitet sehr effizient und kann auch sehr große Modelle schnell synchronisieren. Wir können zeigen, dass der Gesamtalgortihmus eine optimale Komplexität aufweist, sofern er die Ausführung dominiert. Die Effizient des Algorithmus' wird durch einige Benchmarkergebnisse belegt.
18

Procedurální generování stromů schopností v počítačových hrách za pomocí gramatiky grafu / Procedural Generation Of Skill Trees In Video Games Using Graph Grammer

Anagnoste, Marius-Alexandru January 2021 (has links)
This study investigated the possibility of procedural generation of skill trees which are similar to skill trees in contemporary video games. A set of randomly-selected skill trees from contemporary video games, from differ- ent game genres, was compiled, and an analysis was performed to extract relevant observations from the set. Using the observations, models for skill tree generation, and for skill tree comparison were proposed, and they were followed for the generation and analysis of the results. It was found that the method of Graph Grammars provided satisfying results compared to the set of skill trees from video games. Additionally, the other methods researched, L-Systems and Naive Randomized Graph Generation, while both may still require improvements discussed in the thesis in order to provide more satis- fying results, they may still be used for particular needs by game designers as they are. 1
19

Aplikace hierarchických grafových gramatik v procedurálním generování světů / Aplikace hierarchických grafových gramatik v procedurálním generování světů

Svoboda, Jakub January 2021 (has links)
Title: Application of hierarchical graph grammars in procedural 3D world gen- eration Author: Jakub Svoboda Abstract: Procedural content generation (PCG) is an often-used technique in video games. It allows us to generate large quantities and permutations of con- tent. A common problem in utilizing PCG in level design is that it is challenging to generate content close to what a human would create in overall quality and structure. One way of solving these problems is using graph grammars to rep- resent relations in the game world. Implementing a working graph generator using graph grammars and applying it to generate worlds is not very well docu- mented. This thesis will try to overcome this problem by implementing such a generator and extending it to use hierarchical graph grammars. The generator will be used to generate a 3D open world. The generator should be suitable for levels in other types of games. Keywords: procedural content generation, game development, hierarchical graphs, graph grammars, procedural level design
20

Complexity and expressiveness for formal structures in Natural Language Processing

Ericson, Petter January 2017 (has links)
The formalized and algorithmic study of human language within the field of Natural Language Processing (NLP) has motivated much theoretical work in the related field of formal languages, in particular the subfields of grammar and automata theory. Motivated and informed by NLP, the papers in this thesis explore the connections between expressibility – that is, the ability for a formal system to define complex sets of objects – and algorithmic complexity – that is, the varying amount of effort required to analyse and utilise such systems. Our research studies formal systems working not just on strings, but on more complex structures such as trees and graphs, in particular syntax trees and semantic graphs. The field of mildly context-sensitive languages concerns attempts to find a useful class of formal languages between the context-free and context-sensitive. We study formalisms defining two candidates for this class; tree-adjoining languages and the languages defined by linear context-free rewriting systems. For the former, we specifically investigate the tree languages, and define a subclass and tree automaton with linear parsing complexity. For the latter, we use the framework of parameterized complexity theory to investigate more deeply the related parsing problems, as well as the connections between various formalisms defining the class. The field of semantic modelling aims towards formally and accurately modelling not only the syntax of natural language statements, but also the meaning. In particular, recent work in semantic graphs motivates our study of graph grammars and graph parsing. To the best of our knowledge, the formalism presented in Paper III of this thesis is the first graph grammar where the uniform parsing problem has polynomial parsing complexity, even for input graphs of unbounded node degree.

Page generated in 0.0565 seconds