Spelling suggestions: "subject:"graphbased"" "subject:"graphsbased""
11 |
Impacto da geração de grafos na classificação semissupervisionada / Impact of graph construction on semi-supervised classificationSousa, Celso André Rodrigues de 18 July 2013 (has links)
Uma variedade de algoritmos de aprendizado semissupervisionado baseado em grafos e métodos de geração de grafos foram propostos pela comunidade científica nos últimos anos. Apesar de seu aparente sucesso empírico, a área de aprendizado semissupervisionado carece de um estudo empírico detalhado que avalie o impacto da geração de grafos na classificação semissupervisionada. Neste trabalho, é provido tal estudo empírico. Para tanto, combinam-se uma variedade de métodos de geração de grafos com uma variedade de algoritmos de aprendizado semissupervisionado baseado em grafos para compará-los empiricamente em seis bases de dados amplamente usadas na literatura de aprendizado semissupervisionado. Os algoritmos são avaliados em tarefas de classificação de dígitos, caracteres, texto, imagens e de distribuições gaussianas. A avaliação experimental proposta neste trabalho é subdividida em quatro partes: (1) análise de melhor caso; (2) avaliação da estabilidade dos classificadores semissupervisionados; (3) avaliação do impacto da geração de grafos na classificação semissupervisionada; (4) avaliação da influência dos parâmetros de regularização no desempenho de classificação dos classificadores semissupervisionados. Na análise de melhor caso, avaliam-se as melhores taxas de erro de cada algoritmo semissupervisionado combinado com os métodos de geração de grafos usando uma variedade de valores para o parâmetro de esparsificação, o qual está relacionado ao número de vizinhos de cada exemplo de treinamento. Na avaliação da estabilidade dos classificadores, avalia-se a estabilidade dos classificadores semissupervisionados combinados com os métodos de geração de grafos usando uma variedade de valores para o parâmetro de esparsificação. Para tanto, fixam-se os valores dos parâmetros de regularização (quando existirem) que geraram os melhores resultados na análise de melhor caso. Na avaliação do impacto da geração de grafos, avaliam-se os métodos de geração de grafos combinados com os algoritmos de aprendizado semissupervisionado usando uma variedade de valores para o parâmetro de esparsificação. Assim como na avaliação da estabilidade dos classificadores, para esta avaliação, fixam-se os valores dos parâmetros de regularização (quando existirem) que geraram os melhores resultados na análise de melhor caso. Na avaliação da influência dos parâmetros de regularização na classificação semissupervisionada, avaliam-se as superfícies de erro geradas pelos classificadores semissupervisionados em cada grafo e cada base de dados. Para tanto, fixam-se os grafos que geraram os melhores resultados na análise de melhor caso e variam-se os valores dos parâmetros de regularização. O intuito destes experimentos é avaliar o balanceamento entre desempenho de classificação e estabilidade dos algoritmos de aprendizado semissupervisionado baseado em grafos numa variedade de métodos de geração de grafos e valores de parâmetros (de esparsificação e de regularização, se houver). A partir dos resultados obtidos, pode-se concluir que o grafo k- vizinhos mais próximos mútuo (mutKNN) pode ser a melhor opção dentre os métodos de geração de grafos de adjacência, enquanto que o kernel RBF pode ser a melhor opção dentre os métodos de geração de matrizes ponderadas. Em adição, o grafo mutKNN tende a gerar superfícies de erro que são mais suaves que aquelas geradas pelos outros métodos de geração de grafos de adjacência. Entretanto, o grafo mutKNN é instável para valores relativamente pequenos de k. Os resultados obtidos neste trabalho indicam que o desempenho de classificação dos algoritmos semissupervisionados baseados em grafos é fortemente influenciado pela configuração de parâmetros. Poucos padrões evidentes foram encontrados para auxiliar o processo de seleção de parâmetros. As consequências dessa instabilidade são discutidas neste trabalho em termos de pesquisa e aplicações práticas / A variety of graph-based semi-supervised learning algorithms have been proposed by the research community in the last few years. Despite its apparent empirical success, the field of semi-supervised learning lacks a detailed empirical study that evaluates the influence of graph construction on semisupervised learning. In this work we provide such an empirical study. For such purpose, we combine a variety of graph construction methods with a variety of graph-based semi-supervised learning algorithms in order to empirically compare them in six benchmark data sets widely used in the semi-supervised learning literature. The algorithms are evaluated in tasks about digit, character, text, and image classification as well as classification of gaussian distributions. The experimental evaluation proposed in this work is subdivided into four parts: (1) best case analysis; (2) evaluation of classifiers stability; (3) evaluation of the influence of graph construction on semi-supervised learning; (4) evaluation of the influence of regularization parameters on the classification performance of semi-supervised learning algorithms. In the best case analysis, we evaluate the lowest error rates of each semi-supervised learning algorithm combined with the graph construction methods using a variety of sparsification parameter values. Such parameter is associated with the number of neighbors of each training example. In the evaluation of classifiers stability, we evaluate the stability of the semi-supervised learning algorithms combined with the graph construction methods using a variety of sparsification parameter values. For such purpose, we fixed the regularization parameter values (if any) with the values that achieved the best result in the best case analysis. In the evaluation of the influence of graph construction, we evaluate the graph construction methods combined with the semi-supervised learning algorithms using a variety of sparsification parameter values. In this analysis, as occurred in the evaluation of classifiers stability, we fixed the regularization parameter values (if any) with the values that achieved the best result in the best case analysis. In the evaluation of the influence of regularization parameters on the classification performance of semi-supervised learning algorithms, we evaluate the error surfaces generated by the semi-supervised classifiers in each graph and data set. For such purpose, we fixed the graphs that achieved the best results in the best case analysis and varied the regularization parameters values. The intention of our experiments is evaluating the trade-off between classification performance and stability of the graphbased semi-supervised learning algorithms in a variety of graph construction methods as well as parameter values (sparsification and regularization, if applicable). From the obtained results, we conclude that the mutual k-nearest neighbors (mutKNN) graph may be the best choice for adjacency graph construction while the RBF kernel may be the best choice for weighted matrix generation. In addition, mutKNN tends to generate error surfaces that are smoother than those generated by other adjacency graph construction methods. However, mutKNN is unstable for relatively small values of k. Our results indicate that the classification performance of the graph-based semi-supervised learning algorithms are heavily influenced by parameter setting. We found just a few evident patterns that could help parameter selection. The consequences of such instability are discussed in this work in research and practice
|
12 |
Graph based approaches for image segmentation and object tracking / Méthodes de graphe pour la segmentation d'images et le suivi d'objets dynamiquesWang, Xiaofang 27 March 2015 (has links)
Cette thèse est proposée en deux parties. Une première partie se concentre sur la segmentation d’image. C’est en effet un problème fondamental pour la vision par ordinateur. En particulier, la segmentation non supervisée d’images est un élément important dans de nombreux algorithmes de haut niveau et de systèmes d’application. Dans cette thèse, nous proposons trois méthodes qui utilisent la segmentation d’images se basant sur différentes méthodes de graphes qui se révèlent être des outils puissants permettant de résoudre ces problèmes. Nous proposons dans un premier temps de développer une nouvelle méthode originale de construction de graphe. Nous analysons également différentes méthodes similaires ainsi que l’influence de l’utilisation de divers descripteurs. Le type de graphe proposé, appelé graphe local/global, encode de manière adaptative les informations sur la structure locale et globale de l’image. De plus, nous réalisons un groupement global en utilisant une représentation parcimonieuse des caractéristiques des superpixels sur le dictionnaire de toutes les caractéristiques en résolvant un problème de minimisation l0. De nombreuses expériences sont menées par la suite sur la base de données <Berkeley Segmentation>, et la méthode proposée est comparée avec des algorithmes classiques de segmentation. Les résultats démontrent que notre méthode peut générer des partitions visuellement significatives, mais aussi que des résultats quantitatifs très compétitifs sont obtenus en comparaison des algorithmes usuels. Dans un deuxième temps, nous proposons de travailler sur une méthode reposant sur un graphe d’affinité discriminant, qui joue un rôle essentiel dans la segmentation d’image. Un nouveau descripteur, appelé patch pondéré par couleur, est développé pour calculer le poids des arcs du graphe d’affinité. Cette nouvelle fonctionnalité est en mesure d’intégrer simultanément l’information sur la couleur et le voisinage en représentant les pixels avec des patchs de couleur. De plus, nous affectons à chaque pixel une pondération à la fois local et globale de manière adaptative afin d’atténuer l’effet trop lisse lié à l’utilisation de patchs. Des expériences approfondies montrent que notre méthode est compétitive par rapport aux autres méthodes standards à partir de plusieurs paramètres d’évaluation. Finalement, nous proposons une méthode qui combine superpixels, représentation parcimonieuse, et une nouvelle caractéristisation de mi-niveau pour décrire les superpixels. Le nouvelle caractérisation de mi-niveau contient non seulement les mêmes informations que les caractéristiques initiales de bas niveau, mais contient également des informations contextuelles supplémentaires. Nous validons la caractéristisation de mi-niveau proposée sur l’ensemble de données MSRC et les résultats de segmentation montrent des améliorations à la fois qualitatives et quantitatives par rapport aux autres méthodes standards. Une deuxième partie se concentre sur le suivi d’objets multiples. C’est un domaine de recherche très actif, qui est d’une importance majeure pour un grand nombre d’applications, par exemple la vidéo-surveillance de piétons ou de véhicules pour des raisons de sécurité ou l’identification de motifs de mouvements animaliers. / Image segmentation is a fundamental problem in computer vision. In particular, unsupervised image segmentation is an important component in many high-level algorithms and practical vision systems. In this dissertation, we propose three methods that approach image segmentation from different angles of graph based methods and are proved powerful to address these problems. Our first method develops an original graph construction method. We also analyze different types of graph construction method as well as the influence of various feature descriptors. The proposed graph, called a local/global graph, encodes adaptively the local and global image structure information. In addition, we realize global grouping using a sparse representation of superpixels’ features over the dictionary of all features by solving a l0-minimization problem. Extensive experiments are conducted on the Berkeley Segmentation Database, and the proposed method is compared with classical benchmark algorithms. The results demonstrate that our method can generate visually meaningful partitions, but also that very competitive quantitative results are achieved compared with state-of-the-art algorithms. Our second method derives a discriminative affinity graph that plays an essential role in graph-based image segmentation. A new feature descriptor, called weighted color patch, is developed to compute the weight of edges in an affinity graph. This new feature is able to incorporate both color and neighborhood information by representing pixels with color patches. Furthermore, we assign both local and global weights adaptively for each pixel in a patch in order to alleviate the over-smooth effect of using patches. The extensive experiments show that our method is competitive compared to the other standard methods with multiple evaluation metrics. The third approach combines superpixels, sparse representation, and a new midlevel feature to describe superpixels. The new mid-level feature not only carries the same information as the initial low-level features, but also carries additional contextual cue. We validate the proposed mid-level feature framework on the MSRC dataset, and the segmented results show improvements from both qualitative and quantitative viewpoints compared with other state-of-the-art methods. Multi-target tracking is an intensively studied area of research and is valuable for a large amount of applications, e.g. video surveillance of pedestrians or vehicles motions for sake of security, or identification of the motion pattern of animals or biological/synthetic particles to infer information about the underlying mechanisms. We propose a detect-then-track framework to track massive colloids’ motion paths in active suspension system. First, a region based level set method is adopted to segment all colloids from long-term videos subject to intensity inhomogeneity. Moreover, the circular Hough transform further refines the segmentation to obtain colloid individually. Second, we propose to recover all colloids’ trajectories simultaneously, which is a global optimal problem that can be solved efficiently with optimal algorithms based on min-cost/max flow. We evaluate the proposed framework on a real benchmark with annotations on 9 different videos. Extensive experiments show that the proposed framework outperforms standard methods with large margin.
|
13 |
Graph based algorithms to efficiently map VLSI circuits with simple cells / Algoritmos baseados em grafos para mapear eficientemente circuitos VLSI com porta simplesMatos, Jody Maick Araujo de January 2018 (has links)
Essa tese introduz um conjunto de algoritmos baseados em grafos para o mapeamento eficiente de circuitos VLSI com células simples. Os algoritmos propostos se baseiam em minimizar de maneira eficiente o número de elementos lógicos usados na implementação do circuito. Posteriormente, uma quantidade significativa de esforço é aplicada na minimização do número de inversores entre esses elementos lógicos. Por fim, essa representação lógica é mapeada para circuitos compostos somente por células NAND e NOR de duas entradas, juntamente com inversores. Células XOR e XNOR de duas entradas também podem ser consideradas. Como nós também consideramos circuitos sequenciais, flips-flops também são levados em consideração. Com o grande esforço de minimização de elementos lógicos, o circuito gerado pode conter algumas células com um fanout impraticável para os nodos tecnológicos atuais. Para corrigir essas ocorrências, nós propomos um algoritmo de limitação de fanout que considera tanto a área sendo utilizada pelas células quanto a sua profundidade lógica. Os algoritmos propostos foram aplicados sobre um conjunto de circuitos de benchmark e os resultados obtidos demonstram a utilidade dos métodos. Essa tese introduz um conjunto de algoritmos baseados em grafos para o mapeamento eficiente de circuitos VLSI com células simples. Os algoritmos propostos se baseiam em minimizar de maneira eficiente o número de elementos lógicos usados na implementação do circuito. Posteriormente, uma quantidade significativa de esforço é aplicada na minimização do número de inversores entre esses elementos lógicos. Por fim, essa representação lógica é mapeada para circuitos compostos somente por células NAND e NOR de duas entradas, juntamente com inversores. Células XOR e XNOR de duas entradas também podem ser consideradas. Como nós também consideramos circuitos sequenciais, flips-flops também são levados em consideração. Com o grande esforço de minimização de elementos lógicos, o circuito gerado pode conter algumas células com um fanout impraticável para os nodos tecnológicos atuais. Para corrigir essas ocorrências, nós propomos um algoritmo de limitação de fanout que considera tanto a área sendo utilizada pelas células quanto a sua profundidade lógica. Os algoritmos propostos foram aplicados sobre um conjunto de circuitos de benchmark e os resultados obtidos demonstram a utilidade dos métodos. Adicionalmente, algumas aplicações Morethan-Moore, tais como circuitos baseados em eletrônica impressa, também podem ser beneficiadas pela abordagem proposta. / This thesis introduces a set of graph-based algorithms for efficiently mapping VLSI circuits using simple cells. The proposed algorithms are concerned to, first, effectively minimize the number of logic elements implementing the synthesized circuit. Then, we focus a significant effort on minimizing the number of inverters in between these logic elements. Finally, this logic representation is mapped into a circuit comprised of only two-input NANDs and NORS, along with the inverters. Two-input XORs and XNORs can also be optionally considered. As we also consider sequential circuits in this work, flip-flops are taken into account as well. Additionally, with high-effort optimization on the number of logic elements, the generated circuits may contain some cells with unfeasible fanout for current technology nodes. In order to fix these occurrences, we propose an area-oriented, level-aware algorithm for fanout limitation. The proposed algorithms were applied over a set of benchmark circuits and the obtained results have shown the usefulness of the method. We show that efficient implementations in terms of inverter count, transistor count, area, power and delay can be generated from circuits with a reduced number of both simple cells and inverters, combined with XOR/XNOR-based optimizations. The proposed buffering algorithm can handle all unfeasible fanout occurrences, while (i) optimizing the number of added inverters; and (ii) assigning cells to the inverter tree based on their level criticality. When comparing with academic and commercial approaches, we are able to simultaneously reduce the average number of inverters, transistors, area, power dissipation and delay up to 48%, 5%, 5%, 5%, and 53%, respectively. As the adoption of a limited set of simple standard cells have been showing benefits for a variety of modern VLSI circuits constraints, such as layout regularity, routability constraints, and/or ultra low power constraints, the proposed methods can be of special interest for these applications. Additionally, some More-than-Moore applications, such as printed electronics designs, can also take benefit from the proposed approach.
|
14 |
Graph based transforms for compression of new imaging modalities / Transformées basées graphes pour la compression de nouvelles modalités d’imageRizkallah, Mira 26 April 2019 (has links)
En raison de la grande disponibilité de nouveaux types de caméras capturant des informations géométriques supplémentaires, ainsi que de l'émergence de nouvelles modalités d'image telles que les champs de lumière et les images omnidirectionnelles, il est nécessaire de stocker et de diffuser une quantité énorme de hautes dimensions. Les exigences croissantes en matière de streaming et de stockage de ces nouvelles modalités d’image nécessitent de nouveaux outils de codage d’images exploitant la structure complexe de ces données. Cette thèse a pour but d'explorer de nouvelles approches basées sur les graphes pour adapter les techniques de codage de transformées d'image aux types de données émergents où les informations échantillonnées reposent sur des structures irrégulières. Dans une première contribution, de nouvelles transformées basées sur des graphes locaux sont conçues pour des représentations compactes des champs de lumière. En tirant parti d’une conception minutieuse des supports de transformées locaux et d’une procédure d’optimisation locale des fonctions de base , il est possible d’améliorer considérablement le compaction d'énergie. Néanmoins, la localisation des supports ne permettait pas d'exploiter les dépendances à long terme du signal. Cela a conduit à une deuxième contribution où différentes stratégies d'échantillonnage sont étudiées. Couplés à de nouvelles méthodes de prédiction, ils ont conduit à des résultats très importants en ce qui concerne la compression quasi sans perte de champs de lumière statiques. La troisième partie de la thèse porte sur la définition de sous-graphes optimisés en distorsion de débit pour le codage de contenu omnidirectionnel. Si nous allons plus loin et donnons plus de liberté aux graphes que nous souhaitons utiliser, nous pouvons apprendre ou définir un modèle (ensemble de poids sur les arêtes) qui pourrait ne pas être entièrement fiable pour la conception de transformées. La dernière partie de la thèse est consacrée à l'analyse théorique de l'effet de l'incertitude sur l'efficacité des transformées basées graphes. / Due to the large availability of new camera types capturing extra geometrical information, as well as the emergence of new image modalities such as light fields and omni-directional images, a huge amount of high dimensional data has to be stored and delivered. The ever growing streaming and storage requirements of these new image modalities require novel image coding tools that exploit the complex structure of those data. This thesis aims at exploring novel graph based approaches for adapting traditional image transform coding techniques to the emerging data types where the sampled information are lying on irregular structures. In a first contribution, novel local graph based transforms are designed for light field compact representations. By leveraging a careful design of local transform supports and a local basis functions optimization procedure, significant improvements in terms of energy compaction can be obtained. Nevertheless, the locality of the supports did not permit to exploit long term dependencies of the signal. This led to a second contribution where different sampling strategies are investigated. Coupled with novel prediction methods, they led to very prominent results for quasi-lossless compression of light fields. The third part of the thesis focuses on the definition of rate-distortion optimized sub-graphs for the coding of omni-directional content. If we move further and give more degree of freedom to the graphs we wish to use, we can learn or define a model (set of weights on the edges) that might not be entirely reliable for transform design. The last part of the thesis is dedicated to theoretically analyze the effect of the uncertainty on the efficiency of the graph transforms.
|
15 |
A Lab System for Secret Sharing / Utveckling av laborationssystem för secret sharingOlsson, Fredrik January 2004 (has links)
<p>Finnegan Lab System is a graphical computer program for learning how secret sharing works. With its focus on the algorithms and the data streams, the user does not have to consider machine-specific low-level details. It is highly modularised and is not restricted to secret sharing, but can easily be extended with new functions, such as building blocks for Feistel networks or signal processing. </p><p>This thesis describes what secret sharing is, the development of a new lab system designed for secret sharing and how it can be used.</p>
|
16 |
A Hybrid Intelligent System for Stamping Process Planning in Progressive Die DesignZhang, W.Y., Tor, Shu Beng, Britton, G.A. 01 1900 (has links)
This paper presents an intelligent, hybrid system for stamping process planning in progressive die design. The system combines the flexibility of blackboard architecture with case-based reasoning. The hybrid system has the advantage that it can use past knowledge and experience for case-based reasoning when it exists, and other reasoning approaches when it doesn’t exist. A prototype system has been implemented in CLIPS and interfaced with Solid Edge CAD system. An example is included to demonstrate the approach. / Singapore-MIT Alliance (SMA)
|
17 |
Learning from Partially Labeled Data: Unsupervised and Semi-supervised Learning on Graphs and Learning with Distribution ShiftingHuang, Jiayuan January 2007 (has links)
This thesis focuses on two fundamental machine learning problems:unsupervised learning, where no label information is available, and semi-supervised learning, where a small amount of labels are given in
addition to unlabeled data. These problems arise in many real word applications, such as Web analysis and bioinformatics,where a large amount of data is available, but no or only a small amount of labeled data exists. Obtaining classification labels in these domains is usually quite difficult because it involves either manual labeling or physical experimentation.
This thesis approaches these problems from two perspectives:
graph based and distribution based.
First, I investigate a series of graph based learning algorithms that are able to exploit information embedded in different types of graph structures. These algorithms allow label information to be shared between nodes
in the graph---ultimately communicating information globally to yield effective unsupervised and semi-supervised learning.
In particular, I extend existing graph based learning algorithms, currently based on undirected graphs, to more general graph types, including directed graphs, hypergraphs and complex networks. These richer graph representations allow one to more naturally
capture the intrinsic data relationships that exist, for example, in Web data, relational data, bioinformatics and social networks.
For each of these generalized graph structures I show how information propagation can be characterized by distinct random walk models, and then use this characterization
to develop new unsupervised and semi-supervised learning algorithms.
Second, I investigate a more statistically oriented approach that explicitly models a learning scenario where the training and test examples come from different distributions.
This is a difficult situation for standard statistical learning approaches, since they typically incorporate an assumption that the distributions for training and test sets are similar, if not identical. To achieve good performance in this scenario, I utilize unlabeled data to correct the bias between the training and test distributions. A key idea is to produce resampling weights for bias correction by working directly in a feature space and bypassing the problem
of explicit density estimation. The technique can be easily applied to many different supervised learning algorithms, automatically adapting their behavior to cope with distribution shifting between training and test data.
|
18 |
Learning from Partially Labeled Data: Unsupervised and Semi-supervised Learning on Graphs and Learning with Distribution ShiftingHuang, Jiayuan January 2007 (has links)
This thesis focuses on two fundamental machine learning problems:unsupervised learning, where no label information is available, and semi-supervised learning, where a small amount of labels are given in
addition to unlabeled data. These problems arise in many real word applications, such as Web analysis and bioinformatics,where a large amount of data is available, but no or only a small amount of labeled data exists. Obtaining classification labels in these domains is usually quite difficult because it involves either manual labeling or physical experimentation.
This thesis approaches these problems from two perspectives:
graph based and distribution based.
First, I investigate a series of graph based learning algorithms that are able to exploit information embedded in different types of graph structures. These algorithms allow label information to be shared between nodes
in the graph---ultimately communicating information globally to yield effective unsupervised and semi-supervised learning.
In particular, I extend existing graph based learning algorithms, currently based on undirected graphs, to more general graph types, including directed graphs, hypergraphs and complex networks. These richer graph representations allow one to more naturally
capture the intrinsic data relationships that exist, for example, in Web data, relational data, bioinformatics and social networks.
For each of these generalized graph structures I show how information propagation can be characterized by distinct random walk models, and then use this characterization
to develop new unsupervised and semi-supervised learning algorithms.
Second, I investigate a more statistically oriented approach that explicitly models a learning scenario where the training and test examples come from different distributions.
This is a difficult situation for standard statistical learning approaches, since they typically incorporate an assumption that the distributions for training and test sets are similar, if not identical. To achieve good performance in this scenario, I utilize unlabeled data to correct the bias between the training and test distributions. A key idea is to produce resampling weights for bias correction by working directly in a feature space and bypassing the problem
of explicit density estimation. The technique can be easily applied to many different supervised learning algorithms, automatically adapting their behavior to cope with distribution shifting between training and test data.
|
19 |
Graph-based learning for information systemsLi, Xin January 2009 (has links)
The advance of information technologies (IT) makes it possible to collect a massive amount of data in business applications and information systems. The increasing data volumes require more effective knowledge discovery techniques to make the best use of the data. This dissertation focuses on knowledge discovery on graph-structured data, i.e., graph-based learning. Graph-structured data refers to data instances with relational information indicating their interactions in this study. Graph-structured data exist in a variety of application areas related to information systems, such as business intelligence, knowledge management, e-commerce, medical informatics, etc. Developing knowledge discovery techniques on graph-structured data is critical to decision making and the reuse of knowledge in business applications.In this dissertation, I propose a graph-based learning framework and identify four major knowledge discovery tasks using graph-structured data: topology description, node classification, link prediction, and community detection. I present a series of studies to illustrate the knowledge discovery tasks and propose solutions for these example applications. As to the topology description task, in Chapter 2 I examine the global characteristics of relations extracted from documents. Such relations are extracted using different information processing techniques and aggregated to different analytical unit levels. As to the node classification task, Chapter 3 and Chapter 4 study the patent classification problem and the gene function prediction problem, respectively. In Chapter 3, I model knowledge diffusion and evolution with patent citation networks for patent classification. In Chapter 4, I extend the context assumption in previous research and model context graphs in gene interaction networks for gene function prediction. As to the link prediction task, Chapter 5 presents an example application in recommendation systems. I frame the recommendation problem as link prediction on user-item interaction graphs, and propose capturing graph-related features to tackle this problem. Chapter 6 examines the community detection task in the context of online interactions. In this study, I propose to take advantage of the sentiments (agreements and disagreements) expressed in users' interactions to improve community detection effectiveness. All these examples show that the graph representation allows the graph structure and node/link information to be more effectively utilized in addressing the four knowledge discovery tasks.In general, the graph-based learning framework contributes to the domain of information systems by categorizing related knowledge discovery tasks, promoting the further use of the graph representation, and suggesting approaches for knowledge discovery on graph-structured data. In practice, the proposed graph-based learning framework can be used to develop a variety of IT artifacts that address critical problems in business applications.
|
20 |
Graph-Based Visualization of Ontology-Based Competence Profiles for Research CollaborationAfzal, Mansoor January 2012 (has links)
Information visualization can be valuable in a wide range of applications, it deals with abstract, non-spatial data and with the representation of data elements in a meaningful form irrespective of the size of the data, because sometimes visualization itself focuses on the certain key aspects of the data in the representation and thus it helps by providing ease for the goal oriented interpretation. Information visualization focuses on providing a spontaneous and deeper level of the understanding of the data. Research collaboration enhances sharing knowledge and also enhances an individual’s talent. New ideas are generated when knowledge is shared and transferred among each other. According to (He et al, 2009) Research collaboration has been considered as a phenomenon of growing importance for the researchers, also it should be encouraged and is considered to be a “good thing” among the researchers. The main purpose of this thesis work is to prepare a model for the competence profile visualization purpose. For this purpose the study of different visualization techniques that exist in the field of information visualization are discussed in this thesis work. The study and discussion about the visualization techniques motivates in selecting appropriate visualization techniques for the visualization of Ontology-based competence profiles for research collaboration purpose. A proof of concept is developed which shows how these visualization techniques are applied to visualize several components of competence profile.
|
Page generated in 0.0583 seconds