• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 13
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 84
  • 84
  • 34
  • 25
  • 16
  • 15
  • 14
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Graph based algorithms to efficiently map VLSI circuits with simple cells / Algoritmos baseados em grafos para mapear eficientemente circuitos VLSI com porta simples

Matos, Jody Maick Araujo de January 2018 (has links)
Essa tese introduz um conjunto de algoritmos baseados em grafos para o mapeamento eficiente de circuitos VLSI com células simples. Os algoritmos propostos se baseiam em minimizar de maneira eficiente o número de elementos lógicos usados na implementação do circuito. Posteriormente, uma quantidade significativa de esforço é aplicada na minimização do número de inversores entre esses elementos lógicos. Por fim, essa representação lógica é mapeada para circuitos compostos somente por células NAND e NOR de duas entradas, juntamente com inversores. Células XOR e XNOR de duas entradas também podem ser consideradas. Como nós também consideramos circuitos sequenciais, flips-flops também são levados em consideração. Com o grande esforço de minimização de elementos lógicos, o circuito gerado pode conter algumas células com um fanout impraticável para os nodos tecnológicos atuais. Para corrigir essas ocorrências, nós propomos um algoritmo de limitação de fanout que considera tanto a área sendo utilizada pelas células quanto a sua profundidade lógica. Os algoritmos propostos foram aplicados sobre um conjunto de circuitos de benchmark e os resultados obtidos demonstram a utilidade dos métodos. Essa tese introduz um conjunto de algoritmos baseados em grafos para o mapeamento eficiente de circuitos VLSI com células simples. Os algoritmos propostos se baseiam em minimizar de maneira eficiente o número de elementos lógicos usados na implementação do circuito. Posteriormente, uma quantidade significativa de esforço é aplicada na minimização do número de inversores entre esses elementos lógicos. Por fim, essa representação lógica é mapeada para circuitos compostos somente por células NAND e NOR de duas entradas, juntamente com inversores. Células XOR e XNOR de duas entradas também podem ser consideradas. Como nós também consideramos circuitos sequenciais, flips-flops também são levados em consideração. Com o grande esforço de minimização de elementos lógicos, o circuito gerado pode conter algumas células com um fanout impraticável para os nodos tecnológicos atuais. Para corrigir essas ocorrências, nós propomos um algoritmo de limitação de fanout que considera tanto a área sendo utilizada pelas células quanto a sua profundidade lógica. Os algoritmos propostos foram aplicados sobre um conjunto de circuitos de benchmark e os resultados obtidos demonstram a utilidade dos métodos. Adicionalmente, algumas aplicações Morethan-Moore, tais como circuitos baseados em eletrônica impressa, também podem ser beneficiadas pela abordagem proposta. / This thesis introduces a set of graph-based algorithms for efficiently mapping VLSI circuits using simple cells. The proposed algorithms are concerned to, first, effectively minimize the number of logic elements implementing the synthesized circuit. Then, we focus a significant effort on minimizing the number of inverters in between these logic elements. Finally, this logic representation is mapped into a circuit comprised of only two-input NANDs and NORS, along with the inverters. Two-input XORs and XNORs can also be optionally considered. As we also consider sequential circuits in this work, flip-flops are taken into account as well. Additionally, with high-effort optimization on the number of logic elements, the generated circuits may contain some cells with unfeasible fanout for current technology nodes. In order to fix these occurrences, we propose an area-oriented, level-aware algorithm for fanout limitation. The proposed algorithms were applied over a set of benchmark circuits and the obtained results have shown the usefulness of the method. We show that efficient implementations in terms of inverter count, transistor count, area, power and delay can be generated from circuits with a reduced number of both simple cells and inverters, combined with XOR/XNOR-based optimizations. The proposed buffering algorithm can handle all unfeasible fanout occurrences, while (i) optimizing the number of added inverters; and (ii) assigning cells to the inverter tree based on their level criticality. When comparing with academic and commercial approaches, we are able to simultaneously reduce the average number of inverters, transistors, area, power dissipation and delay up to 48%, 5%, 5%, 5%, and 53%, respectively. As the adoption of a limited set of simple standard cells have been showing benefits for a variety of modern VLSI circuits constraints, such as layout regularity, routability constraints, and/or ultra low power constraints, the proposed methods can be of special interest for these applications. Additionally, some More-than-Moore applications, such as printed electronics designs, can also take benefit from the proposed approach.
22

Graph based algorithms to efficiently map VLSI circuits with simple cells / Algoritmos baseados em grafos para mapear eficientemente circuitos VLSI com porta simples

Matos, Jody Maick Araujo de January 2018 (has links)
Essa tese introduz um conjunto de algoritmos baseados em grafos para o mapeamento eficiente de circuitos VLSI com células simples. Os algoritmos propostos se baseiam em minimizar de maneira eficiente o número de elementos lógicos usados na implementação do circuito. Posteriormente, uma quantidade significativa de esforço é aplicada na minimização do número de inversores entre esses elementos lógicos. Por fim, essa representação lógica é mapeada para circuitos compostos somente por células NAND e NOR de duas entradas, juntamente com inversores. Células XOR e XNOR de duas entradas também podem ser consideradas. Como nós também consideramos circuitos sequenciais, flips-flops também são levados em consideração. Com o grande esforço de minimização de elementos lógicos, o circuito gerado pode conter algumas células com um fanout impraticável para os nodos tecnológicos atuais. Para corrigir essas ocorrências, nós propomos um algoritmo de limitação de fanout que considera tanto a área sendo utilizada pelas células quanto a sua profundidade lógica. Os algoritmos propostos foram aplicados sobre um conjunto de circuitos de benchmark e os resultados obtidos demonstram a utilidade dos métodos. Essa tese introduz um conjunto de algoritmos baseados em grafos para o mapeamento eficiente de circuitos VLSI com células simples. Os algoritmos propostos se baseiam em minimizar de maneira eficiente o número de elementos lógicos usados na implementação do circuito. Posteriormente, uma quantidade significativa de esforço é aplicada na minimização do número de inversores entre esses elementos lógicos. Por fim, essa representação lógica é mapeada para circuitos compostos somente por células NAND e NOR de duas entradas, juntamente com inversores. Células XOR e XNOR de duas entradas também podem ser consideradas. Como nós também consideramos circuitos sequenciais, flips-flops também são levados em consideração. Com o grande esforço de minimização de elementos lógicos, o circuito gerado pode conter algumas células com um fanout impraticável para os nodos tecnológicos atuais. Para corrigir essas ocorrências, nós propomos um algoritmo de limitação de fanout que considera tanto a área sendo utilizada pelas células quanto a sua profundidade lógica. Os algoritmos propostos foram aplicados sobre um conjunto de circuitos de benchmark e os resultados obtidos demonstram a utilidade dos métodos. Adicionalmente, algumas aplicações Morethan-Moore, tais como circuitos baseados em eletrônica impressa, também podem ser beneficiadas pela abordagem proposta. / This thesis introduces a set of graph-based algorithms for efficiently mapping VLSI circuits using simple cells. The proposed algorithms are concerned to, first, effectively minimize the number of logic elements implementing the synthesized circuit. Then, we focus a significant effort on minimizing the number of inverters in between these logic elements. Finally, this logic representation is mapped into a circuit comprised of only two-input NANDs and NORS, along with the inverters. Two-input XORs and XNORs can also be optionally considered. As we also consider sequential circuits in this work, flip-flops are taken into account as well. Additionally, with high-effort optimization on the number of logic elements, the generated circuits may contain some cells with unfeasible fanout for current technology nodes. In order to fix these occurrences, we propose an area-oriented, level-aware algorithm for fanout limitation. The proposed algorithms were applied over a set of benchmark circuits and the obtained results have shown the usefulness of the method. We show that efficient implementations in terms of inverter count, transistor count, area, power and delay can be generated from circuits with a reduced number of both simple cells and inverters, combined with XOR/XNOR-based optimizations. The proposed buffering algorithm can handle all unfeasible fanout occurrences, while (i) optimizing the number of added inverters; and (ii) assigning cells to the inverter tree based on their level criticality. When comparing with academic and commercial approaches, we are able to simultaneously reduce the average number of inverters, transistors, area, power dissipation and delay up to 48%, 5%, 5%, 5%, and 53%, respectively. As the adoption of a limited set of simple standard cells have been showing benefits for a variety of modern VLSI circuits constraints, such as layout regularity, routability constraints, and/or ultra low power constraints, the proposed methods can be of special interest for these applications. Additionally, some More-than-Moore applications, such as printed electronics designs, can also take benefit from the proposed approach.
23

Impacto da geração de grafos na classificação semissupervisionada / Impact of graph construction on semi-supervised classification

Celso André Rodrigues de Sousa 18 July 2013 (has links)
Uma variedade de algoritmos de aprendizado semissupervisionado baseado em grafos e métodos de geração de grafos foram propostos pela comunidade científica nos últimos anos. Apesar de seu aparente sucesso empírico, a área de aprendizado semissupervisionado carece de um estudo empírico detalhado que avalie o impacto da geração de grafos na classificação semissupervisionada. Neste trabalho, é provido tal estudo empírico. Para tanto, combinam-se uma variedade de métodos de geração de grafos com uma variedade de algoritmos de aprendizado semissupervisionado baseado em grafos para compará-los empiricamente em seis bases de dados amplamente usadas na literatura de aprendizado semissupervisionado. Os algoritmos são avaliados em tarefas de classificação de dígitos, caracteres, texto, imagens e de distribuições gaussianas. A avaliação experimental proposta neste trabalho é subdividida em quatro partes: (1) análise de melhor caso; (2) avaliação da estabilidade dos classificadores semissupervisionados; (3) avaliação do impacto da geração de grafos na classificação semissupervisionada; (4) avaliação da influência dos parâmetros de regularização no desempenho de classificação dos classificadores semissupervisionados. Na análise de melhor caso, avaliam-se as melhores taxas de erro de cada algoritmo semissupervisionado combinado com os métodos de geração de grafos usando uma variedade de valores para o parâmetro de esparsificação, o qual está relacionado ao número de vizinhos de cada exemplo de treinamento. Na avaliação da estabilidade dos classificadores, avalia-se a estabilidade dos classificadores semissupervisionados combinados com os métodos de geração de grafos usando uma variedade de valores para o parâmetro de esparsificação. Para tanto, fixam-se os valores dos parâmetros de regularização (quando existirem) que geraram os melhores resultados na análise de melhor caso. Na avaliação do impacto da geração de grafos, avaliam-se os métodos de geração de grafos combinados com os algoritmos de aprendizado semissupervisionado usando uma variedade de valores para o parâmetro de esparsificação. Assim como na avaliação da estabilidade dos classificadores, para esta avaliação, fixam-se os valores dos parâmetros de regularização (quando existirem) que geraram os melhores resultados na análise de melhor caso. Na avaliação da influência dos parâmetros de regularização na classificação semissupervisionada, avaliam-se as superfícies de erro geradas pelos classificadores semissupervisionados em cada grafo e cada base de dados. Para tanto, fixam-se os grafos que geraram os melhores resultados na análise de melhor caso e variam-se os valores dos parâmetros de regularização. O intuito destes experimentos é avaliar o balanceamento entre desempenho de classificação e estabilidade dos algoritmos de aprendizado semissupervisionado baseado em grafos numa variedade de métodos de geração de grafos e valores de parâmetros (de esparsificação e de regularização, se houver). A partir dos resultados obtidos, pode-se concluir que o grafo k- vizinhos mais próximos mútuo (mutKNN) pode ser a melhor opção dentre os métodos de geração de grafos de adjacência, enquanto que o kernel RBF pode ser a melhor opção dentre os métodos de geração de matrizes ponderadas. Em adição, o grafo mutKNN tende a gerar superfícies de erro que são mais suaves que aquelas geradas pelos outros métodos de geração de grafos de adjacência. Entretanto, o grafo mutKNN é instável para valores relativamente pequenos de k. Os resultados obtidos neste trabalho indicam que o desempenho de classificação dos algoritmos semissupervisionados baseados em grafos é fortemente influenciado pela configuração de parâmetros. Poucos padrões evidentes foram encontrados para auxiliar o processo de seleção de parâmetros. As consequências dessa instabilidade são discutidas neste trabalho em termos de pesquisa e aplicações práticas / A variety of graph-based semi-supervised learning algorithms have been proposed by the research community in the last few years. Despite its apparent empirical success, the field of semi-supervised learning lacks a detailed empirical study that evaluates the influence of graph construction on semisupervised learning. In this work we provide such an empirical study. For such purpose, we combine a variety of graph construction methods with a variety of graph-based semi-supervised learning algorithms in order to empirically compare them in six benchmark data sets widely used in the semi-supervised learning literature. The algorithms are evaluated in tasks about digit, character, text, and image classification as well as classification of gaussian distributions. The experimental evaluation proposed in this work is subdivided into four parts: (1) best case analysis; (2) evaluation of classifiers stability; (3) evaluation of the influence of graph construction on semi-supervised learning; (4) evaluation of the influence of regularization parameters on the classification performance of semi-supervised learning algorithms. In the best case analysis, we evaluate the lowest error rates of each semi-supervised learning algorithm combined with the graph construction methods using a variety of sparsification parameter values. Such parameter is associated with the number of neighbors of each training example. In the evaluation of classifiers stability, we evaluate the stability of the semi-supervised learning algorithms combined with the graph construction methods using a variety of sparsification parameter values. For such purpose, we fixed the regularization parameter values (if any) with the values that achieved the best result in the best case analysis. In the evaluation of the influence of graph construction, we evaluate the graph construction methods combined with the semi-supervised learning algorithms using a variety of sparsification parameter values. In this analysis, as occurred in the evaluation of classifiers stability, we fixed the regularization parameter values (if any) with the values that achieved the best result in the best case analysis. In the evaluation of the influence of regularization parameters on the classification performance of semi-supervised learning algorithms, we evaluate the error surfaces generated by the semi-supervised classifiers in each graph and data set. For such purpose, we fixed the graphs that achieved the best results in the best case analysis and varied the regularization parameters values. The intention of our experiments is evaluating the trade-off between classification performance and stability of the graphbased semi-supervised learning algorithms in a variety of graph construction methods as well as parameter values (sparsification and regularization, if applicable). From the obtained results, we conclude that the mutual k-nearest neighbors (mutKNN) graph may be the best choice for adjacency graph construction while the RBF kernel may be the best choice for weighted matrix generation. In addition, mutKNN tends to generate error surfaces that are smoother than those generated by other adjacency graph construction methods. However, mutKNN is unstable for relatively small values of k. Our results indicate that the classification performance of the graph-based semi-supervised learning algorithms are heavily influenced by parameter setting. We found just a few evident patterns that could help parameter selection. The consequences of such instability are discussed in this work in research and practice
24

Supervised Classification Leveraging Refined Unlabeled Data

Bocancea, Andreea January 2015 (has links)
This thesis focuses on how unlabeled data can improve supervised learning classi-fiers in all contexts, for both scarce to abundant label situations. This is meant toaddress the limitations within supervised learning with regards to label availability.Extending the training set with unlabeled data can overcome issues such as selec-tion bias, noise and insufficient data. Based on the overall data distribution andthe initial set of labels, semi-supervised methods provide labels for additional datapoints. The semi-supervised approaches considered in this thesis belong to one ofthe following categories: transductive SVMs, Cluster-then-Label and graph-basedtechniques. Further, we evaluate the behavior of: Logistic regression, Single layerperceptron, SVM and Decision trees. By learning on the extended training set,supervised classifiers are able to generalize better. Based on the results, this the-sis recommends data-processing and algorithmic solutions appropriate to real-worldsituations.
25

Navigace robotu pomocí grafových algoritmů / Robot navigation by means of graph-based algorithms

Čížek, Lubomír January 2011 (has links)
This thesis deals with robot path planning by means of graph-based algorithms. The theoretical part contains basic approaches to robot path planning, and pay closer look at various methods of graph-based algorithms. In the second part of this thesis a simulation environment for robot navigation was created in C#. And in this environment chosen methods of graph-based algorithms have been implemented. This thesis was written within the research project MSM 0021630529: Intelligent systems in automation.
26

Learning from Scholarly Attributed Graphs for Scientific Discovery

Akujuobi, Uchenna Thankgod 18 October 2020 (has links)
Research and experimentation in various scientific fields are based on the knowledge and ideas from scholarly literature. The advancement of research and development has, thus, strengthened the importance of literary analysis and understanding. However, in recent years, researchers have been facing massive scholarly documents published at an exponentially increasing rate. Analyzing this vast number of publications is far beyond the capability of individual researchers. This dissertation is motivated by the need for large scale analyses of the exploding number of scholarly literature for scientific knowledge discovery. In the first part of this dissertation, the interdependencies between scholarly literature are studied. First, I develop Delve – a data-driven search engine supported by our designed semi-supervised edge classification method. This system enables users to search and analyze the relationship between datasets and scholarly literature. Based on the Delve system, I propose to study information extraction as a node classification problem in attributed networks. Specifically, if we can learn the research topics of documents (nodes in a network), we can aggregate documents by topics and retrieve information specific to each topic (e.g., top-k popular datasets). Node classification in attributed networks has several challenges: a limited number of labeled nodes, effective fusion of topological structure and node/edge attributes, and the co-existence of multiple labels for one node. Existing node classification approaches can only address or partially address a few of these challenges. This dissertation addresses these challenges by proposing semi-supervised multi-class/multi-label node classification models to integrate node/edge attributes and topological relationships. The second part of this dissertation examines the problem of analyzing the interdependencies between terms in scholarly literature. I present two algorithms for the automatic hypothesis generation (HG) problem, which refers to the discovery of meaningful implicit connections between scientific terms, including but not limited to diseases, drugs, and genes extracted from databases of biomedical publications. The automatic hypothesis generation problem is modeled as a future connectivity prediction in a dynamic attributed graph. The key is to capture the temporal evolution of node-pair (term-pair) relations. Experiment results and case study analyses highlight the effectiveness of the proposed algorithms compared to the baselines’ extension.
27

Graph-based and algebraic codes for error-correction and erasure recovery

Kshirsagar, Rutuja Milind 25 February 2022 (has links)
Expander codes are sparse graph-based codes with good decoding algorithms. We present a linear-time decoding algorithm for (C,D, alpha, gamma) expander codes based on graphs with any expansion factor given that the minimum distances of the inner codes are bounded below. We also design graph-based codes with hierarchical locality. Such codes provide tiered recovery, depending on the number of erasures. A small number of erasures may be handled by only accessing a few other symbols, allowing for small locality, while larger number may involve a greater number of symbols. This provides an alternative to requiring disjoint repair groups. We also consider availability in this context, relying on the interplay between inner codes and the Tanner graph. We define new families of algebraic geometry codes for the purpose of code-based cryptography. In particular, we consider twisted Hermitian codes, twisted codes from a quotient of the Hermitian curve; and twisted norm-trace codes. These codes have Schur squares with large dimensions and hence could be considered as potential replacements for Goppa codes in the McEliece cryptosytem. However, we study the code-based cryptosystem based on twisted Hermitian codes and lay foundations for a potential attack on such a cryptosystem. / Doctor of Philosophy / Coding theory finds applications in various places such as data transmission, data storage, and even post-quantum cryptography. The goal of data transmission is to ensure fast and efficient information transfer. It is ideal to correct maximum number of errors introduced during transmission by noisy channels. We provide a new construction of expander codes (graph-based codes) and provide a linear-time decoding algorithm which corrects a constant-fraction of errors for these codes given any expansion factor. In this context, channel noise causes distortion of symbols, so that received symbols may be different than those originally sent. We are also interested in codes for erasure recovery, meaning those which restore missing symbols. A recent technique to recover the sent messages is by accesing a small subset of this received information, called locality. We analyze the locality properties of Tanner codes equipped with specific inner code. Code-based cryptography is a leading candidate in the post-quantum setting, meaning it is believed to be secure against quantum algorithms. The McEliece cryptosystem in which the underlying code is a Goppa code is popularly studied and is a top candidate in the NIST competition. However, the adoption of this system is not immediate due to its large key sizes. Code-based cryptosystems based on codes other than Goppa codes might provide a solution. We provide constructions of a new family of codes, called twisted algebraic geomtery codes which may provide alternatives of Goppa codes in the McEliece cryptosystem.
28

Latent Semantic Analysis and Graph Theory for Alert Correlation: A Proposed Approach for IoT Botnet Detection

Lefoane, Moemedi, Ghafir, Ibrahim, Kabir, Sohag, Awan, Irfan, El Hindi, K., Mahendran, A. 16 July 2024 (has links)
Yes / In recent times, the proliferation of Internet of Things (IoT) technology has brought a significant shift in the digital transformation of various industries. The enabling technologies have accelerated this adoption. The possibilities unlocked by IoT have been unprecedented, leading to the emergence of smart applications that have been integrated into national infrastructure. However, the popularity of IoT technology has also attracted the attention of adversaries, who have leveraged the inherent limitations of IoT devices to launch sophisticated attacks, including Multi-Stage attacks (MSAs) such as IoT botnet attacks. These attacks have caused significant losses in revenue across industries, amounting to billions of dollars. To address this challenge, this paper proposes a system for IoT botnet detection that comprises two phases. The first phase aims to identify IoT botnet traffic, the input to this phase is the IoT traffic, which is subjected to feature selection and classification model training to distinguish malicious traffic from normal traffic. The second phase analyses the malicious traffic from stage one to identify different botnet attack campaigns. The second stage employs an alert correlation approach that combines the Latent Semantic Analysis (LSA) unsupervised learning and graph theory based techniques. The proposed system was evaluated using a publicly available real IoT traffic dataset and yielded promising results, with a True Positive Rate (TPR) of over 99% and a False Positive Rate (FPR) of 0%. / Researchers Supporting Project, King Saud University, Riyadh, Saudi Arabia, under Grant RSPD2024R953
29

Automatically Determining Consequences of Unexpected Events

Becker, Brian 01 January 2007 (has links)
Planning is essential for an action-oriented, goal-driven software agent. In order to achieve a specific goal, an agent must first generate a plan. However, as the poet Robert Burns once noted, the best laid plans can often go awry. Each step of the plan is subject to the possibility of failure, a truth particularly relevant in the realworld or a realistic simulated environment. External influences not originally considered can often cause sudden, unanticipated consequences during the execution of the plan. When this happens, an intelligent software agent needs to answer the following important questions: What are the consequences of this event on its plan? How will the plan be affected? Can the plan be adjusted to accommodate the unanticipated effects? The research described in this thesis develops a model whereby intelligent agents can automatically determine consequences of unplanned events. Such a model provides agents with the ability to detect if and how events will affect the plan. This allows agents to subsequently modify the plan to mitigate unfavorable consequences or take advantage of favorable consequences.
30

Analysis of biochemical reaction graph : application to heterotrophic plant cell metabolism / Analyse des graphes de reactions biochimiques avec une application au réseau metabolique de la cellule de plante

Nguyen, Vu ngoc tung 03 February 2015 (has links)
Aujourd’hui, la biologie des systèmes est confrontée aux défis de l’analyse de l’énorme quantité de données biologiques et à la taille des réseaux métaboliques pour des analyses à grande échelle. Bien que plusieurs méthodes aient été développées au cours des dernières années pour résoudre ce problème, ce sujet reste un domaine de recherche en plein essor. Cette thèse se concentre sur l’analyse des propriétés structurales, le calcul des modes élémentaires de flux et la détermination d’ensembles de coupe minimales du graphe formé par ces réseaux. Dans notre recherche, nous avons collaboré avec des biologistes pour reconstruire un réseau métabolique de taille moyenne du métabolisme cellulaire de la plante, environ 90 noeuds et 150 arêtes. En premier lieu, nous avons fait l’analyse des propriétés structurelles du réseau dans le but de trouver son organisation. Les réactions points centraux de ce réseau trouvés dans cette étape n’expliquent pas clairement la structure du réseau. Les mesures classiques de propriétés des graphes ne donnent pas plus d’informations utiles. En deuxième lieu, nous avons calculé les modes élémentaires de flux qui permettent de trouver les chemins uniques et minimaux dans un réseau métabolique, cette méthode donne un grand nombre de solutions, autour des centaines de milliers de voies métaboliques possibles qu’il est difficile de gérer manuellement. Enfin, les coupes minimales de graphe, ont été utilisés pour énumérer tous les ensembles minimaux et uniques des réactions qui stoppent les voies possibles trouvées à la précédente étape. Le nombre de coupes minimales a une tendance à ne pas croître exponentiellement avec la taille du réseau a contrario des modes élémentaires de flux. Nous avons combiné l’analyse de ces modes et les ensembles de coupe pour améliorer l’analyse du réseau. Les résultats montrent l’importance d’ensembles de coupe pour la recherche de la structure hiérarchique du réseau à travers modes de flux élémentaires. Nous avons étudié un cas particulier : qu’arrive-t-il si on stoppe l’entrée de glucose ? En utilisant les coupes minimales de taille deux, huit réactions ont toujours été trouvés dans les modes élémentaires qui permettent la production des différents sucres et métabolites d’intérêt au cas où le glucose est arrêté. Ces huit réactions jouent le rôle du squelette / coeur de notre réseau. En élargissant notre analyse aux coupes minimales de taille 3, nous avons identifié cinq réactions comme point de branchement entre différent modes. Ces 13 réactions créent une classification hiérarchique des modes de flux élémentaires fixés et nous ont permis de réduire considérablement le nombre de cas à étudier (approximativement divisé par 10) dans l’analyse des chemins réalisables dans le réseau métabolique. La combinaison de ces deux outils nous a permis d’approcher plus efficacement l’étude de la production des différents métabolites d’intérêt par la cellule de plante hétérotrophique. / Nowadays, systems biology are facing the challenges of analysing the huge amount of biological data and large-scale metabolic networks. Although several methods have been developed in recent years to solve this problem, it is existing hardness in studying these data and interpreting the obtained results comprehensively. This thesis focuses on analysis of structural properties, computation of elementary flux modes and determination of minimal cut sets of the heterotrophic plant cellmetabolic network. In our research, we have collaborated with biologists to reconstructa mid-size metabolic network of this heterotrophic plant cell. This network contains about 90 nodes and 150 edges. First step, we have done the analysis of structural properties by using graph theory measures, with the aim of finding its owned organisation. The central points orhub reactions found in this step do not explain clearly the network structure. The small-world or scale-free attributes have been investigated, but they do not give more useful information. In the second step, one of the promising analysis methods, named elementary flux modes, givesa large number of solutions, around hundreds of thousands of feasible metabolic pathways that is difficult to handle them manually. In the third step, minimal cut sets computation, a dual approach of elementary flux modes, has been used to enumerate all minimal and unique sets of reactions stopping the feasible pathways found in the previous step. The number of minimal cut sets has a decreasing trend in large-scale networks in the case of growing the network size. We have also combined elementary flux modes analysis and minimal cut sets computation to find the relationship among the two sets of results. The findings reveal the importance of minimal cut sets in use of seeking the hierarchical structure of this network through elementary flux modes. We have set up the circumstance that what will be happened if glucose entry is absent. Bi analysis of small minimal cut sets we have been able to found set of reactions which has to be present to produce the different sugars or metabolites of interest in absence of glucose entry. Minimal cut sets of size 2 have been used to identify 8 reactions which play the role of the skeleton/core of our network. In addition to these first results, by using minimal cut sets of size 3, we have pointed out five reactions as the starting point of creating a new branch in creationof feasible pathways. These 13 reactions create a hierarchical classification of elementary flux modes set. It helps us understanding more clearly the production of metabolites of interest inside the plant cell metabolism.

Page generated in 0.0667 seconds