• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Classification et Composition de Services Web : Une Perspective Réseaux Complexes

Cherifi, Chantal 09 December 2011 (has links) (PDF)
Les services Web sont des briques de bases logicielles s‟affranchissant de toute contrainte de compatibilité logicielle ou matérielle. Ils sont mis en oeuvre dans une architecture orientée service. A l‟heure actuelle, les travaux de recherche se concentrent principalement sur la découverte et la composition. Cependant, la complexité de la structure de l‟espace des services Web et son évolution doivent nécessairement être prises en compte. Ceci ne peut se concevoir sans faire appel à la science des systèmes complexes, et notamment à la théorie des réseaux complexes. Dans cette thèse, nous définissons un ensemble de réseaux pour la composition sur la base de services décrits dans des langages syntaxique (WSDL) et sémantique (SAWSDL). L‟exploration expérimentale de ces réseaux permet de mettre en évidence les propriétés caractéristiques des grands graphes de terrain (la propriété petit monde et la distribution sans échelle). On montre par ailleurs que ces réseaux possèdent une structure communautaire. Ce résultat permet d‟apporter une réponse alternative à la problématique de la classification de services selon les domaines d‟intérêts. En effet, les communautés regroupent non pas des services aux fonctionnalités similaires, mais des services qui ont en commun de nombreuses relations d‟interaction. Cette organisation peut être utilisée entre autres, afin de guider les algorithmes de recherche de compositions. De plus, en ce qui concerne la classification des services aux fonctionnalités similaires en vue de la découverte ou de la substitution, nous proposons un ensemble de modèles de réseaux pour les représentations syntaxique et sémantique des services, traduisant divers degrés de similitude. L‟analyse topologique de ces réseaux fait apparaître une structuration en composantes et une organisation interne des composantes autour de motifs élémentaires. Cette propriété permet une caractérisation à deux niveaux de la notion de communauté de services similaires, mettant ainsi en avant la souplesse de ce nouveau modèle d‟organisation. Ces travaux ouvrent de nouvelles perspectives dans les problématiques de l‟architecture orientée service.
2

Algorithmes mémétiques de détection de communautés dans les réseaux complexes : techniques palliatives de la limite de résolution

Gach, Olivier 03 December 2013 (has links) (PDF)
Les réseaux complexes, issus de relevés de terrain d'origines trèsvariées, en biologie, science de l'information ou sociologie,présentent une caractéristique remarquable dénommée structurecommunautaire. Des groupes, ou communautés, à l'intérieur duréseau, ont une cohésion interne forte et des liens entre eux plusfaibles. Sans connaissance a priori du nombre de communautés, ladifficulté réside dans la caractérisation d'un bon partitionnement encommunautés. La modularité est une mesure globale de qualité departitionnement très utilisée qui capture les contraintes de cohésioninterne forte et de liens externes faibles. Elle transforme le problèmede détection de communautés en problème d'optimisationNP-difficile. Elle souffre d'un défaut, la limite de résolution, qui tendà rendre indétectables les très petites communautés d'autant plusque le réseau est grand. L'algorithme le plus efficace pour optimiserla modularité, dit de Louvain, procède par fusion de communautés.Cette thèse s'attache à modifier cet algorithme pour qu'il réalisemajoritairement des fusions pertinentes, qui n'aggravent pas lalimite de résolution, en utilisant une condition de fusion. De plus, enl'associant à un algorithme mémétique, les partitions proposéessont très proches des partitions attendues pour des graphesgénérés par un modèle qui reproduit les caractéristiques desréseaux complexes. Enfin, cet algorithme mémétique réduitfortement l'inconsistance de solution, défaut de la modularité selonlequel deux partitions trouvées à partir d'un examen des noeudsdans un ordre aléatoire, pour le même graphe, peuvent êtrestructurellement très différentes, rendant leur interprétation délicate.
3

Algorithmes mémétiques de détection de communautés dans les réseaux complexes : techniques palliatives de la limite de résolution / Memetic algorithm for community detection in Complex Network : mitigation techniques to the resolution limit, the main weakness of modularity

Gach, Olivier 03 December 2013 (has links)
Les réseaux complexes, issus de relevés de terrain d’origines trèsvariées, en biologie, science de l’information ou sociologie,présentent une caractéristique remarquable dénommée structurecommunautaire. Des groupes, ou communautés, à l’intérieur duréseau, ont une cohésion interne forte et des liens entre eux plusfaibles. Sans connaissance a priori du nombre de communautés, ladifficulté réside dans la caractérisation d’un bon partitionnement encommunautés. La modularité est une mesure globale de qualité departitionnement très utilisée qui capture les contraintes de cohésioninterne forte et de liens externes faibles. Elle transforme le problèmede détection de communautés en problème d’optimisationNP-difficile. Elle souffre d’un défaut, la limite de résolution, qui tendà rendre indétectables les très petites communautés d’autant plusque le réseau est grand. L’algorithme le plus efficace pour optimiserla modularité, dit de Louvain, procède par fusion de communautés.Cette thèse s’attache à modifier cet algorithme pour qu’il réalisemajoritairement des fusions pertinentes, qui n’aggravent pas lalimite de résolution, en utilisant une condition de fusion. De plus, enl’associant à un algorithme mémétique, les partitions proposéessont très proches des partitions attendues pour des graphesgénérés par un modèle qui reproduit les caractéristiques desréseaux complexes. Enfin, cet algorithme mémétique réduitfortement l’inconsistance de solution, défaut de la modularité selonlequel deux partitions trouvées à partir d’un examen des noeudsdans un ordre aléatoire, pour le même graphe, peuvent êtrestructurellement très différentes, rendant leur interprétation délicate. / From various applications, in sociology or biology for instance,complex networks exhib the remarquable property of communitystructure. Groups, sometimes called communities, has a stronginternal cohesion and poor links between them. Whithout priorknowledge of the number of communities, the difficulty lies in thecharacterization of a good clustering. Modularity is an overallmeasure of clustering quality widely used to capture the doubleconstraint, internal and external, of well formed communities. Theproblem became a NP-hard optimization problem. The main weakof modularity is the resolution limit, which tends to makeundetectable very small communities especially as the network islarge. The algorithm of Louvain, one of the most efficient one tooptimize modularity, proceeds by merging communities. This thesisattempts to modify the algorithm so that it mainly produces relevantmerges that do not make worse the effects of resolution limit, usinga merge condition. In addition, by combining it with a memeticalgorithm, proposed clusterings are very close to the expected onesfor graphs generated by a model that reproduces the characteristicsof complex networks. Finally, the memetic algorithm greatly reducesthe inconsistency of solution, another weakness of modularity suchthat, for the same graph, two partitions found from an exploration ofnodes in a random order can be structurally very different, makingthem difficult to interpret.
4

Information Diffusion in Complex Networks : Measurement-Based Analysis Applied to Modelling / Phénomènes de diffusion sur les grands réseaux : mesure et analyse pour la modélisation

Faria Bernardes, Daniel 21 March 2014 (has links)
Dans cette thèse nous avons étudié la diffusion de l'information dans les grands graphes de terrain, en se focalisant sur les patterns structurels de la propagation. Sur le plan empirique, il s'est avéré difficile de capturer la structure des cascades de diffusion en termes de mesures simples. Sur le plan théorique, l'approche classique consiste à étudier des modèles stochastiques de contagion. Néanmoins, l'analyse formelle de ces modèles reste limité, car les graphes de terrain ont généralement une topologie complexe et le processus de diffusion se produit dans une fenêtre de temps limitée. Par conséquent, une meilleure compréhension des données empiriques, des modèles théoriques et du lien entre les deux est également cruciale pour la caractérisation de la diffusion dans les grands graphes de terrain. Après un état de l'art sur les graphes de terrain et la diffusion dans ce contexte au premier chapitre, nous décrivons notre jeu de données et discutons sa pertinence au chapitre 2. Ensuite, dans le chapitre 3, nous évaluons la pertinence du modèle SIR simple et de deux extensions qui prennent en compte des hétérogénéités de notre jeu de données. Dans le chapitre 4, nous explorons la prise en compte du temps dans l'évolution du réseau sous-jacent et dans le modèle de diffusion. Dans le chapitre 5, nous évaluons l'impacte de la structure du graphe sous-jacent sur la structure des cascades de diffusion générées avec les modèles étudiés dans les chapitres précédents. Nous terminons la thèse par un bilan des résultats et des perspectives ouvertes par les travaux menés dans cette thèse. / Understanding information diffusion on complex networks is a key issue from a theoretical and applied perspective. Epidemiology-inspired SIR models have been proposed to model information diffusion. Recent papers have analyzed this question from a data-driven perspective. We complement these findings investigating if epidemic models calibrate with a systematic procedure are capable of reproducing key spreading cascade properties. We first identify a large-scale, rich dataset from which we can reconstruct the diffusion trail and the underlying network. Secondly, we examine the simple SIR model as a baseline model and conclude that it was unable to generate structurally realistic spreading cascades. We found the same result examining model extensions to which take into account heterogeneities observed in the data. In contrast, other models which take into account time patterns available in the data generate qualitatively more similar cascades. Although one key property was not reproduced in any model, this result highlights the importance of taking time patterns into account. We have also analyzed the impact of the underlying network structure on the models examined. In our data the observed cascades were constrained in time, so we could not rely on the theoretical results relating the asymptotic behavior of the epidemic and network topological features. Performing simulations we assessed the impact of these common topological properties in time-bounded epidemic and identified that the distribution of neighbors of seed nodes had the most impact among the investigated properties in our context. We conclude discussing identifying perspectives opened by this work.
5

Analyse de la structure locale des grands réseaux sociaux

Stoica Beck, Alina 12 October 2010 (has links) (PDF)
Le principal but de notre recherche a été de caractériser les individus connectés dans un réseau social en analysant la structure locale du réseau. Pour cela, nous avons proposé une méthode qui décrit la façon dont un noeud (correspondant à un individu) est intégré dans le réseau. Notre méthode est liée à l'analyse de réseaux égocentrés en sociologie et à l'approche locale dans l'étude des grands graphes de terrain. Elle peut être appliquée à des petits réseaux, à des fractions de réseaux et aussi à des grands réseaux, grâce à sa petite complexité. Nous avons appliqué la méthode proposée à deux grands réseaux sociaux, un modélisant des activités enligne sur MySpace, l'autre modélisant des communications par téléphone mobile. Dans le premier cas nous nous sommes intéressés à l'analyse de la popularité enligne des artistes sur MySpace. Dans le deuxième cas, nous avons proposé et avons utilisé une méthode pour regrouper les noeuds qui sont connectés au réseau de façon similaire. Nous avons constaté que la distribution des utilisateurs de téléphone mobile dans des groupes était corrélée à d'autres caractéristiques des individus (intensité de communication et 'âge). Bien que dans cette thèse nous ayons appliqué les deux méthodes seulement aux réseaux sociaux, elles peuvent être appliquées de la même manière à tout autre graphe, peu importe son origine.
6

Métrologie des graphes de terrain, application à la construction de ressources lexicales et à la recherche d'information / Metrology of terrain networks, application to lexical resources enrichment and to information retrieval

Navarro, Emmanuel 04 November 2013 (has links)
Cette thèse s'organise en deux parties : une première partie s'intéresse aux mesures de similarité entre sommets d'un graphe, une seconde aux méthodes de clustering de graphe biparti. Une nouvelle mesure de similarité entre sommets basée sur des marches aléatoires en temps courts est introduite. Cette méthode a l'avantage, en particulier, d'être insensible à la densité du graphe. Il est ensuite proposé un large état de l'art des similarités entre sommets, ainsi qu'une comparaison expérimentale de ces différentes mesures. Cette première partie se poursuit par la proposition d'une méthode robuste de comparaison de graphes partageant le même ensemble de sommets. Cette mesure est mise en application pour comparer et fusionner des graphes de synonymie. Enfin une application d'aide à la construction de ressources lexicales est présentée. Elle consiste à proposer de nouvelles relations de synonymie à partir de l'ensemble des relations de synonymie déjà existantes. Dans une seconde partie, un parallèle entre l'analyse formelle de concepts et le clustering de graphe biparti est établi. Ce parallèle conduit à l'étude d'un cas particulier pour lequel une partition d’un des groupes de sommets d’un graphe biparti peut-être déterminée alors qu'il n'existe pas de partitionnement correspondant sur l’autre type de sommets. Une méthode simple qui répond à ce problème est proposée et évaluée. Enfin Kodex, un système de classification automatique des résultats d'une recherche d'information est présenté. Ce système est une application en RI des méthodes de clustering vues précédemment. Une évaluation sur une collection de deux millions de pages web montre les avantages de l'approche et permet en outre de mieux comprendre certaines différences entre méthodes de clustering. / This thesis is organized in two parts : the first part focuses on measures of similarity (or proximity) between vertices of a graph, the second part on clustering methods for bipartite graph. A new measure of similarity between vertices, based on short time random walks, is introduced. The main advantage of the method is that it is insensitive to the density of the graph. A broad state of the art of similarities between vertices is then proposed, as well as experimental comparisons of these measures. This is followed by the proposal of a robust method for comparing graphs sharing the same set of vertices. This measure is shown to be applicable to the comparison and merging of synonymy networks. Finally an application for the enrichment of lexical resources is presented. It consists in providing candidate synonyms on the basis of already existing links. In the second part, a parallel between formal concept analysis and clustering of bipartite graph is established. This parallel leads to the particular case where a partition of one of the vertex groups can be determined whereas there is no corresponding partition on the other group of vertices. A simple method that addresses this problem is proposed and evaluated. Finally, a system of automatic classification of search results (Kodex) is presented. This system is an application of previously seen clustering methods. An evaluation on a collection of two million web pages shows the benefits of the approach and also helps to understand some differences between clustering methods.
7

Métrologie des graphes de terrain, application à la construction de ressources lexicales et à la recherche d'information

Navarro, Emmanuel 04 November 2013 (has links) (PDF)
Cette thèse s'organise en deux parties : une première partie s'intéresse aux mesures de similarité (ou de proximité) définies entre les sommets d'un graphe, une seconde aux méthodes de clustering de graphe biparti. Une nouvelle mesure de similarité entre sommets basée sur des marches aléatoires en temps courts est introduite. Cette méthode a l'avantage, en particulier, d'être insensible à la densité du graphe. Il est ensuite proposé un large état de l'art des similarités entre sommets, ainsi qu'une comparaison expérimentale de ces différentes mesures. Cette première partie se poursuit par la proposition d'une méthode robuste de comparaison de graphes partageant le même ensemble de sommets. Cette méthode est mise en application pour comparer et fusionner des graphes de synonymie. Enfin une application d'aide à la construction de ressources lexicales est présentée. Elle consiste à proposer de nouvelles relations de synonymie à partir de l'ensemble des relations de synonymie déjà existantes. Dans une seconde partie, un parallèle entre l'analyse formelle de concepts et le clustering de graphe biparti est établi. Ce parallèle conduit à l'étude d'un cas particulier pour lequel une partition d'un des groupes de sommets d'un graphe biparti peut-être déterminée alors qu'il n'existe pas de partitionnement correspondant sur l'autre type de sommets. Une méthode simple qui répond à ce problème est proposée et évaluée. Enfin Kodex, un système de classification automatique des résultats d'une recherche d'information est présenté. Ce système est une application en RI des méthodes de clustering vues précédemment. Une évaluation sur une collection de deux millions de pages web montre les avantages de l'approche et permet en outre de mieux comprendre certaines différences entre méthodes de clustering.

Page generated in 0.0879 seconds