• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 299
  • 108
  • 102
  • 43
  • 40
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • Tagged with
  • 763
  • 106
  • 102
  • 80
  • 76
  • 68
  • 62
  • 61
  • 51
  • 49
  • 49
  • 48
  • 47
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Heating Power of Coated FeCoV Magnetic Nanoparticles

Alshammari, Hanaa Ali 31 May 2016 (has links)
No description available.
482

Electrochemical Studies of Lithium-Ion Battery Anode Materials in Lithium-Ion Battery Electrolytes

Zhao, Mingchuan 07 December 2001 (has links)
No description available.
483

Assessment of coal and graphite electrolysis

Sathe, Nilesh 22 May 2006 (has links)
No description available.
484

ANALYSIS OF HEAT-SPREADING THERMAL MANAGEMENT SOLUTIONS FOR LITHIUM-ION BATTERIES

Khasawneh, Hussam Jihad 20 October 2011 (has links)
No description available.
485

Josephson-coupled superconducting regions embedded at the interfaces of highly oriented pyrolytic graphite

Ballestar, Ana, Barzola-Quiquia, José, Scheike, Thomas, Esquinazi, Pablo 02 August 2022 (has links)
Transport properties of a few hundreds of nanometers thick (in the graphene plane direction) lamellae of highly oriented pyrolytic graphite (HOPG) have been investigated. Current–voltage characteristics as well as the temperature dependence of the voltage at different fixed input currents provide evidence for Josephson-coupled superconducting regions embedded in the internal two-dimensional interfaces of HOPG, reaching zero resistance at low enough temperatures.
486

Oxidation of Graphite and Metallurgical Coke : A Numerical Study with an Experimental Approach

Ahmad, Yousef January 2016 (has links)
At the royal institute of technology (KTH) in the department of applied process metallurgy, a novel modelling approach has been developed which allows a dynamic coupling between the commercial thermodynamic software Thermo-Calc and the commercial computational fluid dynamic (CFD) software Ansys Fluent, only referred to as Fluent in the study. The dynamic coupling approach is used to provide numerical CFD-models with thermodynamic data for the thermo-physical properties and for the fluid-fluid chemical reactions occurring in metallurgical processes. The main assumption forthe dynamic coupling approach is the existence of local equilibrium in each computational cell. By assuming local equilibrium in each computational cell it is possible to use thermodynamic data from thermodynamic databases instead of kinetic data to numerically simulate chemical reactions. The dynamic coupling approach has been used by previous studies to numerically simulate chemical reactions in metallurgical processes with good results. In order to validate the dynamic coupling approach further, experimental data is required regarding surface reactions. In this study, a graphiteand metallurgical coke oxidation experimental setup was suggested in order to provide the needed experimental data. With the experimental data, the ability of the dynamic couplings approach to numerically predict the outcome of surface reactions can be tested.By reviewing the literature, the main experimental apparatus suggested for the oxidationexperiments was a thermo-gravimetric analyzer (TGA). The TGA can provide experimental data regarding the reaction rate, kinetic parameters and mass loss as a function of both temperature and time. An experimental setup and procedure were also suggested.In order to test the ability of Fluent to numerically predict the outcome of surface reactions, without any implementation of thermodynamic data from Thermo-Calc, a benchmarking has been conducted. Fluent is benchmarked against graphite oxidation experiments conducted by Kim and No from the Korean advanced institute of science and technology (KAIST). The experimental graphite oxidation rates were compared with the numerically calculated graphite oxidation rates obtained from Fluent. A good match between the experimental graphite oxidation rates and the numerically calculated graphite oxidation rates were obtained. A parameter study was also conducted in order to study the effect of mass diffusion, gas flow rate and the kinetic parameters on the numerically calculated graphite oxidation rate. The results of the parameter study were partially supported by previous graphite oxidation studies. Thus, Fluent proved to be a sufficient numerical tool for numerically predicting the outcome of surface reactions regarding graphite oxidation at zero burn-off degree.
487

The Effect of Long-Term Thermal Cycling on the Microcracking Behavior and Dimensional Stability of Composite Materials

Brown, Timothy Lawrence Jr. 12 December 1997 (has links)
The effect of thermal-cycling-induced microcracking in fiber-reinforced polymer matrix composites is studied. Specific attention is focused on microcrack density as a function of the number of thermal cycles, and the effect of microcracking on the dimensional stability of composite materials. Changes in laminate coefficient of thermal expansion (CTE) and laminate stiffness are of primary concern. Included in the study are materials containing four different Thornel fiber types: a PAN-based T50 fiber and three pitch-based fibers, P55, P75, and P120. The fiber stiffnesses range from 55 Msi to 120 Msi. The fiber CTE's range from -0.50x10⁻⁶/°F to -0.80x10⁻⁶/°F. Also included are three matrix types: Fiberite's 934 epoxy, Amoco's ERL1962 toughened epoxy, and YLA's RS3 cyanate ester. The lamination sequences of the materials considered include a cross-ply configuration, [0/90]2s, and two quasi-isotropic configurations, [0/+45/-45/90]s and [0/+45/90/-45]s. The layer thickness of the materials range from a nominal 0.001 in. to 0.005 in. In addition to the variety of materials considered, three different thermal cycling temperature ranges are considered. These temperature ranges are ±250°F, ±150°F, and ±50°F. The combination of these material and geometric parameters and temperature ranges, combined with thermal cycling to thousands of cycles, makes this one of the most comprehensive studies of thermal-cycling-induced microcracking to date. Experimental comparisons are presented by examining the effect of layer thickness, fiber type, matrix type, and thermal cycling temperature range on microcracking and its influence on the laminates. Results regarding layer thickness effects indicate that thin-layer laminates microcrack more severely than identical laminates with thick layers. For some specimens in this study, the number of microcracks in thin-layer specimens exceeds that in thick-layer specimens by more than a factor of two. Despite the higher number of microcracks in the thin-layer specimens, small changes in CTE after thousands of cycles indicate that the thin-layer specimens are relatively unaffected by the presence of these cracks compared to the thick-layer specimens. Results regarding fiber type indicate that the number of microcracks and the change in CTE after thousands of cycles in the specimens containing PAN-based fibers are less than in the specimens containing comparable stiffness pitch-based fibers. Results for specimens containing the different pitch-based fibers indicate that after thousands of cycles, the number of microcracks in the specimens does not depend on the modulus or CTE of the fiber. The change in laminate CTE does, however, depend highly on the stiffness and CTE of the fiber. Fibers with higher stiffness and more negative CTE exhibit the lowest change in laminate CTE as a result of thermal cycling. The overall CTE of these specimens is, however, more negative as a result of the more negative CTE of the fiber. Results regarding matrix type based on the ±250°F temperature range indicate that the RS3 cyanate ester resin system exhibits the greatest resistance to microcracking and the least change in CTE, particularly for cycles numbering 3000 and less. Extrapolations to higher numbers of cycles indicate, however, that the margin of increased performance is expected to decrease with additional thermal cycling. Results regarding thermal cycling temperature range depend on the matrix type considered and the layer thickness of the specimens. For the ERL1962 resin system, microcrack saturation is expected to occur in all specimens, regardless of the temperature range to which the specimens are exposed. By contrast, the RS3 resin system demonstrates a threshold effect such that cycled to less severe temperature ranges, microcracking does not occur. For the RS3 specimens with 0.005 in. layer thickness, no microcracking or changes in CTE are observed in specimens cycled between between ±150°F or ±50°F. For the RS3 specimens with 0.002 in. layer thickness, no microcracking or changes in CTE are observed in specimens cycled between ±50°F.. Results regarding laminate stiffness indicate negligible change in laminate stiffness due to thermal cycling for the materials and geometries considered in this investigation. The study includes X-ray examination of the specimens, showing that cracks observed at the edge of the specimens penetrate the entire width of the specimen. Glass transition temperatures of the specimens are measured, showing that resin chemistry is not altered as a result of thermal cycling. Results are also presented based on a one-dimensional shear lag analysis developed in the literature. The analysis requires material property information that is difficult to obtain experimentally. Using limited data from the present investigation, material properties associated with the analysis are modified to obtain reasonable agreement with measured microcrack densities. Based on these derived material properties, the analysis generally overpredicts the change in laminate CTE. Predicted changes in laminate stiffness show reasonable correlation with experimentally measured values. / Ph. D.
488

Effect of fiber/Matrix Interphase on the Long Term Behavior of Cross-Ply Laminates

Subramanian, Suresh 25 January 2008 (has links)
A systematic study was conducted to examine the influence of fiber surface treatment and sizing on the formation of fiber-matrix interphase and its effects n the mechanical properties of composite laminates. Three material systems having the same Apollo graphite fibers and HC 9106-3 toughened epoxy matrix, but with different fiber surface treatments and sizings were used in this study. The fibers used in the 810A and 820 A systems received 100% and 200% industry standard surface treatments respectively and were sized with Bisphenol-A unreacted epoxy material. The 810 O system was manufactured with 100% surface treated fibers that were sized with pvp (polyvinylpyrrolidone), a thermoplastic material. The presence of different interphase in these materials was confirmed using a permanganic etching technique. Results indicate that the interphase is discontinuous and made of linear chain polymeric material in the 810 A system. The interphase in the 810 O system has a gradient morphology while the 820 A system does not possess a well defined interphase. Mechanical test results indicate that the 810 O system significantly greater longitudinal tensile strength and failure strain compared to the 810 A system. The 810 A and 820 A systems have similar longitudinal tensile properties. Transverse tensile test results indicate that the 820 A system has the highest strength while the 810 O system has the lowest strength. The (0,90₃), cross-ply laminates from the three material systems exhibit different damage mechanisms and failure modes under monotonic tensile loading. Fatigue test results indicate that the 810 O laminates have longer fatigue lives at higher load levels and shorter fatigue lives at lower load levels compared to the 810 A laminates. The 820 A laminates have longer life compared to the other two materials systems, at all three load levels. The 810 O material exhibits greater damage and stiffness reduction than the other two materials. The 810 A and 820 A systems exhibit a brittle stress concentration controlled failure, while the pvp sized 810 O system exhibits a global strain conuolled failure. A micromechanics model was developed to investigate the role of the interphase on the tensile strength of unidirectional laminates. A new parameter called the ‘efficiency of the interface’, is introduced in the model. A simple scheme that uses the experimentally determined tensile modulus of unidirectional laminates in a concentric cylinders model, is described to estimate the interfacial efficiency. The tensile fatigue performance of cross-ply laminates is predicted using this micromechanics model in a cumulative damage scheme. The predicted fatigue lives and failure modes agree well with experimental results. / Ph. D.
489

Mechanical behavior and damage mechanisms of woven graphite-polyimide composite materials

Wagnecz, Linda 21 July 2010 (has links)
The behavior of 8-harness satin woven Celion 3000/PMR-15 graphite-polyimide was experimentally investigated. Unnotched and center-notched specimens from (0)₁₅, (0)₂₂, and (0,45,0, - 45,0,0, - 45,0,45,0)₂ laminates were tested. Material properties were measured and damage development documented under monotonic tension, sustained incremental tension, and tension-tension fatigue loading. Damage evaluation techniques included stiffness monitoring, penetrant-enhanced X-ray radiography, laminate deply, and residual strength measurement. Material properties of the woven graphite-polyimide were comparable to those of woven graphite-epoxy. Damage development in woven graphite-polyimide was quite different than in non-woven graphite-epoxy. Matrix cracking was denser and delamination less extensive in the graphite-polyimide material system, and as a result, increases in notched residual tensile strength were much lower. A ply level failure theory was used to successfully predict the notched tensile strength of the (0,45,0, - 45,0,0, - 45,0,45,0)₂ laminate based on experimental data from the (0)₂₂ laminate. A simple method was used to simulate fatigue damage in a (0)₂₂ notched specimen to predict residual strength as a function of fatigue life. The advantages and disadvantages of the ply level failure theory used in this study are discussed. / Master of Science
490

Separation and Properties of La₂O₃ in Molten LiF-NaF-KF Salt

Yang, Qiufeng 21 December 2018 (has links)
Studies on nuclear technology have been ongoing since nuclear power became uniquely important to meet climate change goals while phasing out fossil fuels. Research on the fluoride salt cooled high temperature reactor (FHR), which is funded by the United States Department of Energy (DOE), has developed smoothly with the ultimate goal of a 2030 deployment. One challenge presented by FHR is that the primary coolant salt can acquire contamination from fuel failure and moisture leaking into the system. If contamination happens, it will result in a low concentration of fission products, fuel, transuranic materials and oxide impurities in the coolant. These impurities will then affect the properties of the molten salt in the long term and need to be removed without introducing new impurities. Most of the research conducted recently has focused on impurity separation in chloride molten salts. More research urgently needs to be conducted to study the impurity separation method for the fluoride molten salts. In this study, the La₂O₃-LiF-NaF-KF (La₂O₃-FLiNaK) system is used to demonstrate impurity separation in molten fluoride salt. Since lanthanum oxide needs to be dissolved in the fluoride molten salt and studies in this field are still not complete, the solubility of lanthanum oxide in FLiNaK have been measured at different temperatures to obtain the temperature-dependent solubility and understand the corresponding dissolution mechanisms first. In the solubility related experiments, Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is utilized to analyze the concentration of lanthanum ions in the molten FLiNaK salt, while X-ray powder diffraction (XRD) was applied to determine the phase patterns of molten salt. Second, electrochemical experiments with tungsten and graphite as working electrodes were conducted individually to demonstrate the separation of the dissolved oxide from the salt. When the tungsten working electrode was applied, the lanthanum ions were reduced to lanthanum metal at the tungsten cathode, while the fluorine ions reacted with the tungsten anode to form tungsten fluoride. In the experiments, the production of tungsten fluoride could lead to increasing current in the cell, even overload. Moreover, theoretically, tungsten fluoride WF4 is soluble in the fluoride salt thus introducing new impurities. All these issues make tungsten not the best choice when applied to the separation of oxygen ions. Therefore, another common working electrode graphite is used. It not only has all the advantages of tungsten, but also has good performance on separation of oxygen ions. When the graphite electrode was applied, the lanthanum ions were separated in the form of lanthanum carbide (LaC₂), while the oxygen ions can be removed in the form of carbon dioxide (CO₂) or carbon monoxide (CO). In addition, only graphite was consumed during the whole separation process, which is why the graphite anode electrode is called the “sacrificial electrode”. Third, First Principle Molecular Dynamics (FPMD) simulations with Vienne Ab initio Simulation Package (VASP) was conducted to study the properties of the fluoride molten salt. In this study, the structure information and enthalpy of formation were obtained. Generally, the simulation process can be divided into four steps: (1) the simulation systems are prepared by packing ions randomly via Packmol package in the simulation cell; (2) an equilibrium calculation is performed to pre-equilibrate the systems; (3) FPMD simulations in an NVT ensemble are implemented in VASP; (4) based on the FPMD simulations results, the first peak radius and the first-shell coordination number were evaluated with partial radial distribution function (PRDF) analysis to determine the statistics of molten salt structure information, while the transport properties, e.g., the self-diffusion coefficient was calculated according to the function of mean square displacement (MSD) of time generated by the Einstein-Smoluchowshi equation. The viscosity and ionic conductivity were obtained by combining the self-distribution coefficient with the Einstein-Stokes formula and Nernst-Einstein equation. / Master of Science / With the fast development of modern society and economy, more and more energy is urgently needed to meet the growth of industry. Since the traditional energy, such as nature gas, coal, has limited storage and not sustainable, nuclear energy has attracted much attention in the past few decades. Although lots of study has been conducted by thousands of researchers which has attributed to application of nuclear power, there are still some concerns in this field, among which, impurities removal is the most difficult part. Fluoride salt cooled high temperature reactor (FHR) is one of the most promising Gen IV reactor types. As the name indicates, molten salt is the coolant to serve as the heat exchanger intermedium. In addition, it’s inevitable that fission products, i.e. lanthanum, moisture, would leak into the coolant pipe, thus affect the molten salt properties, even degrade reactor performance, therefore, those impurities must be removed without introducing new impurities. In this study, the La₂O₃-LiF-NaF-KF (La₂O₃-FLiNaK) system is used to demonstrate impurity separation into molten fluoride salt. First, solubility of lanthanum oxide in FLiNaK has been measured at different temperatures to understand its dissolution mechanisms. Then, electrochemical experiments with tungsten and graphite as working electrodes were conducted individually to demonstrate the separation of the dissolved oxide from the salt. It has been concluded that tungsten performed well to separate La3+, while failed in the separation of O2-. However, graphite working electrode has succeeded in the removal of La³⁺ and O²⁻. Finally, molecular dynamic simulation with first principle was also conducted to further understand the local structure and heat of formation in the molten FLiNaK and La₂O₃-FLiNaK salt.

Page generated in 0.0513 seconds