Spelling suggestions: "subject:"grassmannienne"" "subject:"grassmannians""
1 |
Variétés de drapeaux symplectiques impairesMihai, Ion Alexandru 27 October 2005 (has links) (PDF)
Les grassmanniennes symplectiques et, plus généralement, les variétés de drapeaux symplectiques, sont les variétés de sous-espaces isotropes, respectivement de drapeaux de sous-espaces isotropes, relativement à une 2-forme antisymétrique non dégénérée. Ce sont les variétés projectives homogènes du groupe symplectique.<br />Nous étudions les grassmanniennes et les variétés de drapeaux symplectiques impaires, qui sont des objets analogues associés à une 2-forme antisymétrique générique sur un espace vectoriel complexe de dimension impaire. Ces variétés sont munies d'actions naturelles du groupe symplectique impair des transformations linéaires qui préservent la forme antisymétrique. Nous montrons que, bien que ces actions ne soient pas transitives, ces variétés partagent de nombreuses propriétés avec les variétés homogènes.<br />En particulier, nous calculons le groupe d'automorphismes des grassmanniennes symplectiques impaires et obtenons que tous ces automorphismes proviennent de l'action du groupe symplectique impair. De même, nous établissons un théorème de type Borel-Weil pour le groupe symplectique impair et explicitons le lien entre certaines classes de représentations de ce groupe construites par Proctor et par Shtepin. Nous étudions également la cohomologie équivariante de la variété des drapeaux symplectiques impairs maximaux. Nous obtenons une formule de type Chevalley-Pieri et nous donnons une présentation à la Borel de l'anneau de cohomologie équivariante. De cette dernière, nous déduisons que l'anneau de cohomologie ordinaire de la variété des drapeaux symplectiques impairs maximaux est isomorphe à l'anneau de cohomologie ordinaire de la variété de drapeaux quadratiques.
|
2 |
Représentations génériques des groupes linéaires : catégories de foncteurs en grassmanniennes, avec applications à la conjecture artinienneDjament, Aurélien 08 December 2006 (has links) (PDF)
Le but de ce travail est d'étudier la structure globale de la catégorie de foncteurs F entre espaces vectoriels sur F_2, notamment la conjecture artinienne, qui équivaut au caractère localement noethérien de cette catégorie. Nous démontrons que le produit tensoriel entre un foncteur fini et le foncteur projectif standard P tenseur 2 est noethérien.<br /> Nous introduisons à cet effet d'autres catégories de foncteurs, nommées catégories de foncteurs en grassmanniennes. Elles permettent d'énoncer une forme très forte de la conjecture artinienne, décrivant la filtration de Krull de la catégorie F. Notre théorème de simplicité généralisé établi une version faible de cette conjecture. Il permet de démontrer le résultat précédent sur la structure de P tenseur 2 tenseur F (avec F fini), que nous avons également obtenu par l'usage conjoint de foncteurs hom internes et de considérations issues de la théorie des représentations modulaires.<br /> Nous décrivons la riche structure algébrique des catégories de foncteurs en grassmanniennes, équivalentes à des catégories de comodules dans F. Notre théorème d'annulation cohomologique fondamental généralise un grand nombre de résultats antérieurs en cohomologie des foncteurs. Il permet également de généraliser une étape essentielle de la démonstration de Suslin de l'isomorphisme entre K-théorie stable et homologie de Mac Lane pour des systèmes de coefficients polynomiaux.
|
3 |
Orbites d'un sous-groupe de Borel dans le produit de deux grassmanniennesSmirnov, Evgeny 29 October 2007 (has links) (PDF)
Soit $X$ le produit direct de deux grassmanniennes des sous-espaces de dimensions $k$, $l$ d'un espace vectoriel $V$. Nous étudions les orbites d'un sous-groupe de Borel $B$ de GL($V$) opérant diagonalement dans $X$, et les adhérences de Zariski de ces orbites, en analogie avec les cellules et les variétés de Schubert dans les grassmanniennes. On vérifie sans pein que ces orbites sont en nombre fini. Elles ont été décrites de façon combinatoire par P. Magyar, J. Weyman et A. Zelevinsky. Nous obtenons un critère pour l'inclusion d'une orbite dans l'adhérence d'une autre orbite, et nous construisons une résolution de ces adhérences d'orbites, analogue aux désingularisations de Bott-Samelson des variétés de Schubert.
|
4 |
Cohomologie quantique des grassmanniennes symplectiques impairesPech, Clelia 06 December 2011 (has links) (PDF)
Les grassmanniennes symplectiques impaires sont une famille d'espaces quasi-homogènes très proches des grassmanniennes symplectiques de par leur construction et leurs propriétés. Dans ce travail, j'étudie leur cohomologie classique et quantique. Pour les grassmanniennes symplectiques impaires de droites, j'obtiens une règle de Pieri quantique ainsi qu'une présentation de l'anneau de cohomologie quantique. J'en déduis la semi-simplicité de cet anneau et je détermine une collection exceptionnelle complète pour la catégorie dérivée, ce qui me permet de vérifier pour cet exemple une conjecture de Dubrovin. Dans le cas général, je démontre un principe quantique-classique pour certains invariants de Gromov-Witten de degré un. Sous réserve de l'énumérativité des invariants de degré supérieur, je prouve que la règle de Pieri quantique est entièrement déterminée par le calcul des invariants de degré un.
|
5 |
Géométrie de quelques algèbres et théorèmes d'annulationCHAPUT, Pierre-Emmanuel 19 December 2003 (has links) (PDF)
Un théorème dû à Zak montre un lien pour le moins mystérieux entre des objets algébriques, les algèbres de Jordan, et des objets apparaissant naturellement dans le cadre de la géométrie projective complexe, les variétés de Scorza. La première partie de cette thèse essaie d'expliquer ce lien. Tout d'abord, la variété des éléments de rang de Jordan 1 dans une algèbre de Jordan est définie puis étudiée en détail: c'est une variété de Scorza et elle est l'image d'une généralisation de l'application de Veronese de degré deux. Ensuite, je donne des variantes de la preuve du théorème de Zak qui expliquent directement le lien avec les algèbres de Jordan, mais aussi l'homogénéité des variétés de Scorza et le rapport avec les espaces préhomogènes symétriques. Une technique omniprésente pour cette étude consiste à définir une algèbre par des constructions de géométrie projective: celle-ci permet de définir l'algèbre de Jordan dans laquelle vivent toutes les variétés de Scorza, mais s'applique plus généralement à un grand nombre d'autres algèbres. Par exemple, je donne une définition géométrique des algèbres de matrices, des algèbres de Lie et des algèbres de composition. De nombreux résultats de nature algébrique peuvent ainsi être retrouvés par des raisonnements géométriques particulièrement simples. J'étudie ainsi le groupe d'automorphismes d'une algèbre de Jordan et prouve une description des groupes spinoriels d'ordre pair. L'autre partie de cette thèse montre des théorèmes d'annulation pour les fibrés vectoriels amples. Je propose une généralisation d'un théorème dû à Laytimi et Nahm pour les puissances de Schur d'un fibré vectoriel correspondant à un produit tensoriel de crochets. Je démontre aussi des résultats pour les fibrés vectoriels de petit rang: ceux-ci impliquent une petite partie de la conjecture de Fulton et Lazarsfeld concernant la connexité de lieux de dégénérescence d'un morphisme de fibrés vectoriels. Par ailleurs, j'obtiens aussi des résultats plus forts dans le cas où le fibré est muni d'une forme quadratique non dégénérée ou symplectique à valeurs dans un fibré en droites. Ces résultats sont conséquence de théorèmes sur la cohomologie de Dolbeault des fibrés en droites homogènes sur les grassmanniennes, isotropes ou non. Je donne plusieurs résultats nouveaux concernant cette cohomologie.
|
6 |
Cohomologie quantique des grassmanniennes symplectiques impaires / Quantum cohomology of symplectic GrassmanniansPech, Clélia 06 December 2011 (has links)
Les grassmanniennes symplectiques impaires sont une famille d'espaces quasi-homogènes très proches des grassmanniennes symplectiques de par leur construction et leurs propriétés. Dans ce travail, j'étudie leur cohomologie classique et quantique. Pour les grassmanniennes symplectiques impaires de droites, j'obtiens une règle de Pieri quantique ainsi qu'une présentation de l'anneau de cohomologie quantique. J'en déduis la semi-simplicité de cet anneau et je détermine une collection exceptionnelle complète pour la catégorie dérivée, ce qui me permet de vérifier pour cet exemple une conjecture de Dubrovin. Dans le cas général, je démontre un principe quantique-classique pour certains invariants de Gromov-Witten de degré un. Sous réserve de l'énumérativité des invariants de degré supérieur, je prouve que la règle de Pieri quantique est entièrement déterminée par le calcul des invariants de degré un. / Odd symplectic Grassmannians are a family of quasi-homogeneous spaces that are closely related to symplectic Grassmannians by their construction and properties. The goal of this work is to study their classical and quantum cohomology. For odd symplectic Grassmannians of lines, I obtain a quantum Pieri rule and a presentation of the quantum cohomology ring. I prove the semisimplicity of this ring and determine a full exceptional collection for the derived category, which enables me to check a conjecture of Dubrovin in this example. In the general case, I prove a quantum-to-classical principle for some degree one Gromov-Witten invariants. Assuming higher-dimensional Gromov-Witten invariants are enumerative, I conclude that the quantum Pieri rule is entirely determined by the knowledge of degree one invariants.
|
Page generated in 0.0662 seconds