• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 128
  • 45
  • 31
  • 15
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 290
  • 115
  • 110
  • 91
  • 82
  • 80
  • 40
  • 30
  • 29
  • 29
  • 28
  • 27
  • 24
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Optical properties of actively controlled reflection and transmission gratings /

Rodriguez, Miguel Angel, January 2000 (has links)
Thesis (Ph. D.)--Lehigh University, 2000. / Includes vita. Includes bibliographical references (leaves 189-194).
22

Dense spectral beam combining with volume Bragg gratings in photo-thermo-refractive glass

Andrusyak, Oleksiy G. January 2009 (has links)
Thesis (Ph.D.)--University of Central Florida, 2009. / Adviser: Leonid B. Glebov. Includes bibliographical references (p. 142-151).
23

Analysis, design, and applications of subwavelength diffraction gratings

Brundrett, David L. 05 1900 (has links)
No description available.
24

Molecular fluorescence near metallic interfaces

Andrew, Piers January 1998 (has links)
No description available.
25

Femtosecond laser inscribed fiber Bragg grating sensors

Zhan, Chun. January 2007 (has links)
Thesis (Ph.D.)--Pennsylvania State University, 2007. / Mode of access: World Wide Web.
26

Plasmon Polariton Bragg Gratings and IR-140 Doped PMMA for Active Bragg Structures

Amyot-Bourgeois, Maude January 2016 (has links)
This thesis contributes to the realisation of plasmonic lasers based on plasmon polariton Bragg gratings. The scope of this thesis is twofold. In the first section, entitled Passive plasmonic Bragg grating characterization, the results of the testing and characterization of a new design of plasmonic Bragg gratings in the near-infrared are presented. The reflection and transmission responses expected from plasmon-polariton Bragg gratings (PPBGs) are treated theoretically using the transfer matrix method (TMM) and the numerical model is validated experimentally. The experimental setup and procedures are then described in detail. Results show that the near-infrared plasmon polariton Bragg gratings possess a Bragg reflection at a wavelength close to the Bragg wavelength predicted by TMM. In the second section, Gain optimisation and bleaching of IR-140 doped PMMA, an in-depth analysis of the gain medium (IR-140 dye doped poly(methyl methacrylate) better known as PMMA) is performed. This gain medium was selected as a gain layer for active plasmonic gratings and distributed feedback lasers designed by a colleague Ph.D. candidate. The optimized molecular weight of IR-140 in PMMA was found to be 0.9% to obtain a material gain of 81 cm-1.
27

Application of diffraction grating theory to analysis and fabrication of waveguide gratings.

Li, Lifeng. January 1988 (has links)
This dissertation includes three separate studies of related waveguide grating phenomena. These studies deal with a numerical improvement of the integral method of diffraction grating theory, the theoretical analysis of waveguide gratings, and fabrication techniques for photoresist grating masks. The first topic addresses the acceleration of the convergence of the integral kernels. To improve the performance of the integral method for calculating diffraction grating efficiencies, the convergence of the integral kernels is studied. A nonlinear sequence transformation, Levin's u-transformation, is successfully applied to accelerate the convergence of the integral kernels. The computer execution time saving is significant. The application details and many numerical examples are given. The second subject is the ray optics theory of waveguide grating analysis. To establish a linkage between the analysis of diffraction gratings and the analysis of waveguide gratings, a new rigorous ray optics theory is developed. It takes into account phase changes on diffraction, multiple diffraction processes, depletion of the incident guided wave, and lateral shifts. A general characteristic equation that determines the waveguide grating attenuation (coupling) coefficient is derived. The symmetry properties of grating diffraction are applied to waveguide grating analysis for the first time. Lateral shifts of optical rays at a periodically corrugated interface similar to the Goos-Haenchen shift at a planar interface are suggested. The third subject is the in situ control of the development of photoresist grating masks. The existing method for monitoring and modeling photoresist grating development are modified and extended to monitoring and modeling photoresist grating mask development. Experimental examples, detailed theoretical considerations, and computer simulations are presented.
28

Characterization of photoinduced gratings in optical glass fibers.

Kuo, Chai-Pei. January 1988 (has links)
The properties of photo-induced gratings in germania doped glass fibers were studied. Permanent phase gratings in a fiber core were fabricated by the mixing of two contra propagating waves. Experiments are described and results are presented which show that the strength of a photoinduced grating is strongly dependent on the writing power as well as the laser writing wavelength. A rigorous development of linear coupled mode theory for the contra propagation geometry is given and used to model the experimentally observed grating responses as a function of fine tuning frequency of probing light. Measurements have been done of the amplitude and phase response of the grating structure and compared with theoretical models of uniform and chirped gratings. The theoretically predicted negative group velocity dispersion in fiber grating was observed interferometrically and described in detail. The nonlinear coupled mode theory has been fully implemented in a computer program and some numerical results are given in the second part of this thesis. The dynamics of a pulse propagating in the fiber grating is simulated and the results show its dependence on pulse energy, frequency detuning, and the type of grating geometry. A limitation is found in the dispersion property of a constant amplitude fiber grating so that the pulse compression ratio and the width of a compressible pulse is strictly limited to ≅250 picoseconds.
29

Numerical modelling of an Erbium-Ytterbium co-doped distributed feedback fiber laser

26 June 2015 (has links)
M.Phil. (Electrical and Electronic Engineering) / A numerical model of an Erbium-Ytterbium co-doped distributed feedback (DFB) fiber laser is developed. The DFB fiber laser is a short length fiber laser whose feedback is distributed throughout the cavity. Its main advantage is its single longitudinal mode operation. The amplifying medium of a DFB fiber laser is a few centimetres long rare earth doped fiber. The feedback is obtained by a fibre Bragg grating printed in the core of the rare earth doped fiber. This type of laser emits naturally in two longitudinal modes. To obtain the single longitudinal mode operation, a π phase shift is introduced in the middle of the grating. Erbium doped DFB fiber lasers present the advantage of emitting single frequency light in the 1550 nm region where telecommunication fibers present the minimum loss. However due to the relatively short length of the gain medium, the number of available Erbium ions is small; as a result pump power absorption is low and the efficiency of the fiber laser is strongly reduced. The straightforward solution to this problem could be increasing the concentration of Erbium ions. This solution however has the disadvantage of increasing the Erbium ions interactions, thus leading to detrimental effect like cooperative upconversion and excited state absorption, which in term reduce considerably the laser efficiency. The best solution is to use Ytterbium ions as sensitizers along with Erbium ions to enhance the pump absorption, hence the efficiency of the laser. A model of the DFB fiber laser is an indispensable tool for its design, because it allows one to predict characteristic behaviour that would be both difficult and costly to deduce in laboratory conditions. The model developed in this project is based on rate equations of the Er3+-Yb3+ gain medium and coupled mode equations describing the laser field propagation in the fibre Bragg grating structure. The equations are solved using a quasi-analytical iterative method along with transfer matrix method with appropriate boundary conditions. The quasianalytical method used in this thesis is more robust than numerical solutions because it does not require providing an initial guess on the solution. Furthermore this method is hundreds time faster than the exact numerical solution while giving almost similar results.
30

Low cost, short wavelenght fiber Bragg grating strain sensor systems

Vaughan, Lira 25 October 2002 (has links)
Fiber Bragg grating sensors have been constantly researched for the last ten years and have finally begun to find use in the commercial market. However, one of the major factors limiting their widespread use is their system cost. Their lightweight, flexibility, electromagnetic immunity, and small size make fiber Bragg grating (FBG) sensors feasible in hostile environments where electrical and mechanical sensors may not function effectively. These sensor systems utilize moderately expensive light sources and detectors at telecommunication wavelengths of 1300 nm and 1550 nm. These are the center wavelengths of the mass-produced FBGs and FBG phase masks. This thesis addresses the development of a lower cost short wavelength fiber Bragg grating strain sensor system using gratings written at 790 nm and 850 nm with the modified phase mask method recently developed at Oregon State University. Short wavelength gratings allow the use of less expensive semiconductor sources and silicon detectors, greatly reducing the overall cost of a strain sensor system from approximately $1600 for a 1300 nm system to $1000 for a 790 nm system. First, the fundamental properties and historical background of fiber Bragg gratings were reviewed. Followed by a literature review of the structures, fabrication methods, and applications of FBGs including sensor applications. The design, manufacture, and assembly of the new short wavelength strain sensor system were described including the production of pigtailed super-luminescent edge emitting light emitting diodes (SELED) from commercial laser diodes, a fiber recoater, and multiple attempts to write a fiber Bragg grating in the 750-850 nm wavelength region. Finally, the short wavelength strain sensor system was compared with a 1300 nm strain sensor detailing the potential cost savings with the short wavelength system. / Graduation date: 2003

Page generated in 0.1038 seconds