• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 128
  • 45
  • 31
  • 15
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 290
  • 115
  • 110
  • 91
  • 82
  • 80
  • 40
  • 30
  • 29
  • 29
  • 28
  • 27
  • 24
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Wavelength Multiplexing of MEMS Pressure and Temperature Sensors Using Fiber Bragg Gratings and Arrayed Waveguide Gratings

Li, Weizhuo January 2005 (has links)
No description available.
62

Photonics for nuclear environments from radiation effects to applications in sensing and data-communication

Fernandez Fernandez, Alberto 07 July 2006 (has links)
No description available.
63

Liquid crystal alignment on excimer laser irradiated polyimide

Newsome, Christopher James January 1999 (has links)
No description available.
64

Ultra-Compact Grating-Based Monolithic Optical Pulse Compressor for Laser Amplifier Systems

Yang, Chang 01 December 2016 (has links)
Ultra-short and high-peak-power laser pulses have important industrial and scientific applications. While direct laser amplification can lead to peak powers of several million watts, higher values than these cannot be achieved without causing damage to the amplifier material. Chirped pulse amplification technique is thus invented to break this barrier. By temporally stretching pulses before entering amplifier, the pulse peak power is significantly reduced and thus becomes safe to be passed through the amplifier. After amplification, a compressor is used to recover the pulse width, and high-power ultra-short laser pulses are produced. Chirped pulse amplification technology increases the pulse energy by transferring the damaging effects of high-peak power laser pulses from the vulnerable amplifier to a relatively robust compressor system. The compressor is therefore a crucial device for producing high peak powers. However, there are some major drawbacks associated with it. First, compressors in high-energy laser system are usually over 1 cubic meter in size. For many applications, this large and cumbersome size is a limiting factor. Second, compressors are sensitive to outside disturbances; a little misalignment can lead to failure of pulse compression process. Third, gratings with large uniformly ruled area are difficult to fabricate, which impose a limit on achievable peak powers and pulse durations of laser pulses through the use of conventional compressors. In this project, we present a grating-based monolithic optical compressor that offers a way around some of the major problems of existing compressors. By integrating the key optical components, one can make a robust and monolithic compressor that requires no alignment. In the new scheme, folding the optical path with reflective coatings allows one to design a compressor of significantly reduced size by minimizing both the longitudinal and transverse dimensions of the device. The configuration and operation mechanism of this novel compressor are described. A method for calculating the volume of the compressor is investigated. This is validated by computing the size of a specific monolithic compressor. Simulation results obtained through finite-difference time-domain method are presented, proving that the new compressor provides a compact, portable, and robust means for temporally compressing long duration pulses.
65

Characterization of Bragg grating pressure sensor using finite element analysis theory and experimental results

04 October 2010 (has links)
M.Ing. / Optical fibre Bragg gratings are a periodic variation of the refractive index in the core of an optical fibre andmay be formed by exposure to intense UV laser light under specific conditions. Light at a certain wavelength, called the Bragg wavelength, is reflected back when illuminating the grating with a light source. Bragg gratings can relatively easily be employed as strain and temperature sensors, but have small sensitivity for pressure. Special transducers are required to increase the sensitivity. A pressure sensor was manufactured by coating a fibre Bragg grating with a polymer. The polymer coating converts transverse pressure into longitudinal strain through the Poisson effect inside the polymer coating. This thesis investigates the sensitivity of themanufactured Bragg grating pressure sensor, by using the method of finite element analysis. An account of the experimental setup, whereby the Bragg grating is written with a frequency tripled Nd:YAG laser, is given. The process whereby the fibre is coated with the polymer is described. The sensor is characterized through experimental results and a comparison is made between theoretical and experimental results. Uses for this sensor and ways with which the sensitivity may be increased are suggested as future work.
66

Transmission diffraction gratings for soft x-ray spectroscopy and spatial period division

Hawryluk, Andrew M January 1982 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Andrew Michael Hawryluk. / Ph.D.
67

Fibre-optic sensing technology and applications in civil engineering.

Wong, Allan Chi-Lun, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2007 (has links)
This thesis reports the research and industry-related works carried out from the development of a fibre-optic strain sensor system for Civil Engineering applications. A sensor system consists of a number of core components, including the sensing element, interrogation/demodulation, multiplexing, signal processing and hardware equipment. In the process of development, a number of issues have been identified and investigated, which resulted in the improvement of the system performance, as well as the proposal of new techniques for the sensor system. First, an improved demodulation technique for a type of sensor, namely the fibre Fizeau interferometer (FFI), is presented. The technique is based on the improvement of the Fourier transform peak detection method, which suffers severely from the poor resolution and accuracy of finding the sensor cavity length. The improvement over the original method has been compared and verified through simulations and experiments. Second, a simultaneous demodulation technique for multiplexed FFI and fibre Bragg grating (FBG) sensors using the discrete wavelet transform (DWT) is proposed. Third, a multiplexing technique using amplitude-modulated chirped FBGs and the DWT is proposed. These two proposed techniques have been demonstrated experimentally through strain measurements. The strain resolution, crosstalk and limitations are investigated. In addition, simultaneous quasi-static strain and temperature sensing of different metal plates are performed. Fibre-optic sensors have found numerous applications in different areas. In this thesis, the use of FBG sensors in Civil Engineering applications is demonstrated in four experimental studies, including: (i) long-term measurement of drying shrinkage and creep of structural grade concrete; (ii) simultaneous measurement of shrinkage and temperature of reactive powder concrete (RPC) at early-age; (iii) measurement of coefficients of thermal expansion of cement mortar and RPC; and (iv) field-trial on the strain monitoring of the world?s first RPC road bridge. In addition, the experimental and practical issues of using FBG sensors are considered.
68

The inverse problem of fiber Bragg gratings /

Jin, Hai, January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (p. 140-144).
69

Fibre Bragg Gratings : Characterization, Realization and Simulation

Petermann, Ingemar January 2007 (has links)
The main topic of this thesis is realization and characterization of fibre Bragg gratings. A novel versatile grating fabrication technique is developed and a number of gratings are realized, showing the potential of the system. Arbitrarily-shaped gratings are sequentially imprinted in the fibre by a moving interference pattern created with a continuous-wave ultraviolet (UV) source. This scheme allows for a very good control and stability of the grating shape, which is also shown experimentally. As opposed to most other present fabrication techniques, the proposed method offers a total control over the grating parameters by software, enabling simple implementation of new designs. Different kinds of error sources when stitching long gratings are identified and investigated regarding impact on the final grating result. Another important question within this field is how to characterize gratings. We propose a new characterization method based on optical low-coherence reflectometry (OLCR). A new interferometer design allows for simple simultaneous detection of the reflection response from two different points in the interrogated grating, so that differential measurements can be performed. The advantage of this is that the sensitivity to noise caused by e.g. thermal fluctuations in the system is substantially reduced. Several test gratings have been investigated and a very good agreement to the expected results is noted. A second characterization technique using interferometric detection of the side diffraction from the grating under test is investigated both theoretically and experimentally. With aid of two-dimensional theory for wave propagation, it is shown that there is a linear relation between the detected phase and modulation depth and the corresponding grating properties. The technique is evaluated with a novel scheme of implementation where the UV source provided in a fabrication setup is used assource for the side probe. This approach results in a very simple implementation and opens for an integration of the characterization and fabrication systems. Finally, a tuning method for transmission filters based on local heating of linearly chirped fibre Bragg gratings is analysed and further developed to allow for fully software-controlled operation. The potential of this technique is illustrated by some promising initial experimental results. / QC 20100812
70

A Study of the Lhires III Spectrograph on the Hard Labor Creek Observatory 20 inch Telescope

Jenkins, Benjamin G 08 August 2011 (has links)
I present a study done to determine the characteristics of the LHIRES III spectrograph on the 20 inch RC Optics telescope at Hard Labor Creek Observatory. I describe the settings of three different diffraction gratings, collimation and focus issues, and practical aspects of use. The spectrograph was used with a SBIG ST-8XME camera for all studies. Data collection was accomplished with the Maxim DL software package and analysis was completed with IRAF. Solutions for the dispersion relation with all three diffraction gratings were found. Several projects are underway with this instrument. I present time series spectra of α Vir to demonstrate the practical applications of the spectrograph. This non-radially pulsating star shows Doppler shifts that were recorded in the Si III 4552, 4568, 4574 Å triplet over the course of a night. The observed profile variations showed the spectrograph capable of exacting scientific work.

Page generated in 0.1269 seconds