• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • Tagged with
  • 33
  • 33
  • 10
  • 10
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Algal Biomass Accrual in Relation to Nutrient Availability along a Longitudinal Gradient in the Upper Green River, Kentucky

Penick, Mary Douglas 01 August 2010 (has links)
Nutrient limitation in aquatic ecosystems results from a deficiency in nitrogen or phosphorus levels relative to cellular growth needs. Nutrient limitation of freshwater systems is a function of biotic and abiotic factors. Biotic factors include vascular and nonvascular plant community composition. Abiotic factors include underlying bedrock and land-use activities (e.g. agriculture, septic systems). Nutrient availability directly affects growth, productivity, and community structure of primary producers. The purpose of this study was two-fold: (1) to assess the relationship between ambient algal biomass. and in-stream nutrient levels along the longitudinal course of a river through a transition from weak to well-developed underlying karst bedrock, and (2) experimentally assess if periphyton was nitrogen or phosphorous limited between weak and well-developed karst sites. Sestonic and filamentous biomass (= chlorophyll-a) levels increased monthly along the longitudinal gradient. In contrast, periphyton biomass levels increased minimally monthly and displayed no longitudinal pattern. Nitrate and soluble reactive phosphorus levels exhibited distinct longitudinal increases, whereas total phosphorous displayed minimal change and ammonia levels decreased in the downstream direction. Total nitrogen (TN) levels increased upstream but decreased sharply in the well-developed downstream karst sites. The nutrient limitation assays revealed that the highest periphyton levels were with N + P treatments at the most upstream sites. Overall, in Kentucky's Green River algal biomass accrual appears to be mainly P-limited but likely also by TN availability during late summer.
22

Reestablishing Diversity in Our Hardwood Forests: A Transplant Study of Five Spring-Flowering Herbs

Racke, Danielle 01 August 2010 (has links)
Herbaceous communities are critical to the functioning of forest ecosystems. They recycle nutrients, help prevent erosion, provide critical microhabitats and maintain biodiversity. In the eastern United States, most hardwood forests are growing on land once entirely cleared or used for some form of agriculture. Although some of these forests are nearly 150 years old, they still have depauperate native herbaceous communities when compared to remaining old-growth forests. This long-term depletion may result from dispersal limitation or environmental limitation. I tested the hypothesis that dispersal was the primary factor contributing to the absence of five spring-flowering herbaceous species in four secondary mesic hardwood forests. I transplanted adults and sowed fresh propagules into chosen forests. By establishing negative controls, I showed that propagules of experimental species were not incidentally dispersed and would not have been present at the sites had I not introduced them. In all four sites, seeds of three ant-dispersed species germinated and adults of these species survived, flowered and self-sowed viable propagules. These results strongly indicated dispersal limitation in all sites. Another ant-dispersed species showed evidence of being dispersal-limited in at least two sites. The limitations of one gravity-dispersed species were unclear. I discuss results from the first year after transplanting and offer management suggestions to facilitate the return of these species to degraded forests.
23

The sedimentology and stratigraphic architecture of the Cathedral Bluffs Tongue of the Wasatch Formation, South Pass, Wyoming

McHugh, Luke P Unknown Date
No description available.
24

The provenance of eocene tuff beds in the fossil butte member of the Green River formation of Wyoming : relation to the Absaroka and Challis volcanic fields /

Chandler, Matthew R., January 2006 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Geology, 2006. / Includes bibliographical references (p. 42-46).
25

A Rejuvenating Resort Remembered: The Use of Folklore and Archaeology in the Investigation of the Historic Massey Springs Resort in South-Central Kentucky

Pinkston, Renee 01 August 2014 (has links)
Using only one line of evidence for a study of historic sites can be problematic if it does not provide a complete picture of the material culture or lifeways of a people, group, or community. In order to understand the ideas and objects, of culture present at historic sites, it is necessary to use archaeological methodologies with vernacular architecture studies and folklore to create a more holistic image of the world and its inhabitants. To facilitate this, I conducted original research on a mineral spring resort, Massey Springs Resort (Massey Springs) in Warren County, Kentucky, a popular resort in the early 1900s. This project examines the site in terms of its archaeological resources, primary and secondary archival data, and vernacular architectural resources. Since there are no standing structures, Massey Springs is worthwhile example of the explicit need of using a multidisciplinary and integrated approach to investigate past lifeways.
26

The Provenance of Eocene Tuff Beds in the Fossil Butte Member of the Green River Formation of Wyoming: Relation to the Absaroka and Challis Volcanic Fields

Chandler, Matthew R. 25 July 2006 (has links) (PDF)
The Green River Formation was deposited between 53.5 and 48.5 Ma. The Angelo, Fossil Butte, and Lower members of the Green River Formation at Fossil Basin, preserve ash fall tuffs deposited in ancient Fossil Lake. 40Ar/39Ar dating of sanidine yielded eruptive ages of 51.29 ± 1.29 Ma and 52.20 ± 3.08 Ma for two of the tuff beds within Fossil Basin. Immobile element and mineral compositions of Fossil Basin tuffs indicate that most tuffs erupted from a subduction zone originally as rhyolites and dacites. X-ray diffraction analyses reveal that the tuffs' glassy matrices have been altered to illite, calcite, clinoptilolite, analcime, albite, and K-feldspar. The variable alteration of the tuff beds confirms previous studies of Fossil Lake's salinity fluctuation through time. One outcrop (FB-10), which was previously interpreted to represent the K-spar tuff, has biotite of different compositions from that in known K-spar tuff samples (FB-09 and FB-11). Tuff horizons from the Greater Green River Basin have feldspar and biotite compositions similar to those from tuffs in Fossil Basin and are interpreted to have the same eruptive sources. Based on age and proximity, the Absaroka and Challis volcanic fields are the likely sources of tephra deposits in Fossil Basin and the Greater Green River Basin. Calc-alkaline tephras in these lacustrine basins have similar magmatic characteristics to the tuff of Ellis Creek (48.4 ± 1.6 Ma) from the Challis volcanic field. However, major and trace element, and mineral compositions of Absaroka and Challis volcanic rocks are not distinctive enough to definitively determine the source of most Fossil Basin and Greater Green River Basin tephras. Two samples, FB-10 from Fossil Basin and WN-79.15 from the Greater Green River Basin, have compositions similar to calc-alkaline magmas, but have some mineral compositions with A-type chemical affinities; consequently we conclude that they were erupted from volcanoes within the Challis volcanic field. Compositions of Challis volcanic rocks may have important implications for the development of a slab window in western North America during the Eocene. Compositional variation of Challis volcanic rocks through time indicates that calc-alkaline rocks with a slight A-type component erupted early in its history, and as the slab window matured the Challis volcanic field dominantly erupted rocks with a more A-type chemical affinity. A slab window may have developed due to the Farallon slab subducting at a shallow angle beneath the North American plate, and gravity may have caused it to break to the north. Through time the slab could have torn to the south and by 50 Ma the slab window would have been opening beneath the Challis volcanic field. This would have erupted calc-alkaline magmas, but upwelling of the asthenosphere into the mantle wedge (beneath the North American plate) would have introduced A-type magmatism into the magmatic system. By 45 Ma, the slab would have matured and opened sufficiently beneath the Challis volcanic field to replace calc-alkaline magmatism with, first "transitional" magmatism, and then A-type magmatism as evident in the youngest Challis tuffs.
27

Characterizing the Low Net-to-Gross, Fluviodeltaic Dry Hollow Member of the Frontier Formation, Western Green River Basin, Wyoming

Meek, Scott Romney 01 August 2017 (has links)
The Frontier Formation in the Green River Basin of southwestern Wyoming consists of Late Cretaceous (Cenomanian-Turonian) marine and non-marine sandstones, siltstones, mudstones and coals deposited on the western margin of the Cretaceous Interior Seaway. Tight gas reservoirs exist in subsurface fluviodeltaic sandstones in the upper Frontier Formation (Dry Hollow Member) on the north-south trending Moxa Arch within the basin. These strata crop out in hogback ridges of the Utah-Idaho-Wyoming Thrust Belt approximately 40 km west of the crest of the Moxa Arch. Detailed, quantitative outcrop descriptions were constructed using emerging photogrammetric techniques along with field observations and measured sections at five key outcrop localities along the thrust belt. Understanding the architectural style of this low net-to-gross fluvial system allows for improved reservoir prediction in this and other comparable basins. The architectural style of the Dry Hollow Member fluvial deposits varies vertically as the result of a relative shoreline transgression during Dry Hollow deposition. Amalgamated conglomerates and associated fine to coarse sandstones near the base of the section and much thinner, isolated sandstones near the top of the Dry Hollow occur in laterally extensive units that can be identified over tens of kilometers. These units also provide means to relate outcrop and subsurface stratigraphic architecture. Combined with available subsurface data, fully-realized 3D static reservoir models for use as analogs in subsurface reservoir characterization may be constructed. Grain size, reservoir thickness and connectivity of fluvial sandstones is generally greatest near the base of this member and decreases upward overall. Despite relative isolation of some channel bodies, geocellular facies modeling indicates good lateral and vertical connectivity of most channel sandstones. The Kemmerer Coal Zone, with little sandstone, divides lower and upper well-connected sandy units.
28

Biological affinities of archaic period populations from west-central Kentucky and Tennessee

Herrmann, Nicholas Paul. January 2002 (has links) (PDF)
Thesis (Ph. D.)--University of Tennessee, Knoxville, 2002. / Title from title page screen (viewed Feb. 27, 2003). Thesis advisor: Lyle W. Konigsberg. Document formatted into pages (xii, 208 p. : ill., maps (some col.)). Vita. Includes bibliographical references (p. 180-202).
29

Carbonate Lake Deposits in the Fluvial Bridger Formation of the Greater Green River Basin, Wyoming

Blakeman, Audrey A. 22 September 2014 (has links)
No description available.
30

Analysis of Mammoth Cave Pre-Park Communities

Brunt, Matthew 01 December 2009 (has links)
Before the creation of Mammoth Cave National Park, this area was home to numerous communities, each with a sense of identity. To prepare for the creation of the National Park, all residents living within these communities were relocated, and many of these communities were lost to the passage of time. Today, public memory of these lost communities is being fostered by the descendents of the pre-park area. Through the use of a Historical Geographic Information System, 1920 Edmonson County manuscript census data, and statistical analysis, the demographic composition of these lost communities was explored. This project not only brought to light a past that is not well known, but also built interest in sustaining public memory of the Mammoth Cave pre-park area through the use of historical GIS and public participation.

Page generated in 0.0711 seconds