• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 26
  • 9
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 93
  • 44
  • 36
  • 32
  • 20
  • 14
  • 14
  • 14
  • 13
  • 12
  • 12
  • 12
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The theoretical and practical dimensions of pounamu management

Hope-Pearson, E.W., n/a January 2002 (has links)
The vesting of pounamu back to Te Runanga o Ngai Tahu brings to the fore a whole new dimension of resource mangement to New Zealand�s wider resource management environment. As is highlighted in this study and noted by a number of academics, Maori people, like other indigenous communities, have their own planning systems values and appropriate processes for decision-making about the environment. But the relevance of such indigenous management systems has long been overlooked by the decision makers and authorities to the continued frustration and anxiety of indigenous peoples. This lack of recognition has been at the fore as a concept fundamental to many indigenous peoples grievances, both past and present. The subsequent vesting of pounamu has brought about the validation that Maori have to resource management rights. In identifying issues associated with the management of natural resources by indigenous peoples, this study provides an examination of number theoretical concepts and a practical dimension associated with the management of natural resources by indigenous peoples and has placed pounamu in context. The placement of pounamu in context has provided the basis from which a number of central issues were identified and discussed. A combination a literature study, analysis of an application traditional knowledge in a contemporary context and in-depth interviews and liaison with key stakeholders involved directly and indirectly in the management of pounmau were undertaken, has established that the management of natural resources by indigenous people is more about the management of number of associated processes rather than about the management of a single commodity, in this instance pounamu. Within these processes there exist a number of complex relationships that reflect the fundamental transaction of power and privilege associated with natural resource management. Further conclusions that this study has made, is the increasing need and importance of legislatures and planning professionals alike to further recognise the validity and become familiar with alternate methods of resource management and the application of indigenous systems and methods.
12

From genesis to juxtaposition : the evolution of the Ivisârtoq greenstone belt, southwest Greenland /

Mader, Marianne M. January 2005 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2005. / Includes bibliographical references. Also available online.
13

Meso – and Neoarchean tectonic evolution of the northwestern Superior Province: Insights from a U-Pb geochronology, Nd isotope, and geochemistry study of the Island Lake greenstone belt, Northeastern Manitoba

Parks, Jennifer January 2011 (has links)
What tectonic processes were operating in the Archean, and whether they were similar to the “modern-style” plate tectonics seen operating today, is a fundamental question about Archean geology. The Superior Province is the largest piece of preserved Archean crust on Earth. As such it provides an excellent opportunity to study Archean tectonic processes. Much work has been completed in the southern part of the Superior Province. A well-documented series of discrete, southward younging orogenies related to a series of northward dipping subduction zones, has been proposed for amalgamating this part of the Superior Province. The tectonic evolution in the northwestern Superior Province is much less constrained, and it is unclear if it is related to the series of subduction zones in the southern part of the Superior Province, or if it is related to an entirely different process. Such ideas need to be tested in order to develop a concise model for the Meso – and Neoarchean tectonic evolution of the northwestern Superior Province. To this end, a field mapping, U-Pb geochronology, Nd isotope, and lithogeochemistry study was undertaken in the Island Lake greenstone belt. This granite-greenstone belt is part of the northern margin of the North Caribou terrane, a larger reworked Mesoarchean crustal block located in the northwestern Superior Province. U-Pb TIMS zircon geochronology data shows that the Island Lake greenstone belt experienced a long and complex geological history that included the deposition of three distinct volcanic assemblages at ca. 2897 Ma, 2852 Ma, and 2744 Ma, as well as a younger clastic sedimentary group, the Island Lake group. All of these volcanic assemblages include felsic and mafic volcanic rocks, as well as a suite of contemporaneous plutonic rocks. The U-Pb data set shows that the Savage Island shear zone, a regional fault structure that transects the Island Lake greenstone belt, is not a terrane-bounding feature as correlative supracrustal assemblages are observed on both sides of it. The Nd isotope data shows that the volcanic assemblages and contemporaneous plutons have been variably contaminated by an older ca. 3.0 Ga crustal source. The mafic volcanic rocks in the assemblages have two distinct geochemical signatures, and show a pattern of decreasing crustal contamination with decreasing age. Together these data suggests that the Meso – and Neoarchean volcanic assemblages are part of an intact primary volcanic stratigraphy that were built on the same ca. 3.0 Ga basement and have autochthonous relationships with each other. This basement is the North Caribou terrane. The youngest sedimentary group in the belt, the Island Lake group, was deposited between 2712 Ma and 2699 Ma. It consists of “Timiskaming-type” sedimentary rocks, and is the youngest clastic sedimentary package in the belt. A detailed study of detrital zircons in units from the stratigraphic bottom to the top of the sedimentary group indicates an age pattern of detrital zircons that is most consistent with a scenario in which sediments were deposited in inter-diapiric basins created by diapirism and sagduction (i.e., vertical tectonic) processes. During the diapiric ascent of the felsic material, inter-diapiric basins were formed in the synclines between adjacent domes, into which sediments were deposited. U-Pb zircon TIMS geochronology identified two ages of deformation in the Island Lake greenstone belt. Two dykes that crosscut an older, D1 foliation place a minimum age of ca. 2723 Ma on the D1 deformation, and two syn-kinematic dykes date movement along two transpressional shear zones to 2700 Ma. Together all these data indicate that the tectonic evolution in the Island Lake greenstone belt and in the northwestern Superior Province took place in three main stages. The first two stages involved the generation of Meso – and Neoarchean volcanic assemblages and contemporaneous plutonic rocks due to southward dipping subduction under the North Caribou micro-continent. The third stage involved the deposition of late “Timiskaming-type” sediments during vertical tectonic processes in conjunction with horizontal tectonic movement along late transpressional shear zones at ca. 2.70 Ga. At the end of this process the North Superior superterrane was terminally docked to the North Caribou terrane along the North Kenyon fault. This study shows that while a version of horizontal or “modern” style plate tectonics were operating in the Archean, vertical tectonic processes were also occurring and that these processes operated synchronously in the Neoarchean.
14

Open Source Software for Creation of Digital Library: A Comparative Study of Greenstone Digital Library Software & DSpace

Randhawa, Sukhwinder 12 1900 (has links)
Softwares now-a-days have become the life line of modern day organizations. Organizations cannot think of doing their tasks effectively and efficiently without softwares. The extremely competitive environment, zero deficiency and enhanced productivity has made it mandatory for the organizations to carefully choose the appropriate software after comprehensive needs assessment. Softwares simply their tasks and saves a lot of precious time which can be utilized in managing other important issues. Libraries also need softwares if they want to create a parallel digital library with features which we may not find in a traditional library. There are several open source softwares available to create a digital library. For this, firstly the library professionals should be aware of the advantages of open source software and should involve in their development. They should have basic knowledge about the selection, installation and maintenance. Open source software requires a greater degree of computing responsibility than commercial software. Digitization involves huge money to create and maintain and the OSS appears to be a means to reduce it. Among these, DSpace and Greenstone are becoming more popular in India and abroad. This paper deals with the comparison of these two popular OSS from various points of view. The comparative table may help the professionals who are planning to create a digital library.
15

Structural, Mineralogical, Geochemical and Geochronological Investigation of the Barry Gold Deposit, Abitibi Subprovince, Canada

Kitney, Kathryn Elizabeth 13 May 2009 (has links)
The Barry gold deposit is an example of an Archean greenstone-hosted lode gold deposit located in the Urban-Barry greenstone belt in the Abitibi subprovince of Québec, Canada. Auriferous zones are spatially associated with NE-trending ductile shear zones with moderate south-easterly dip. Gold mineralization occurs within albite-carbonate-quartz veins that are straight N64ºE/64ºSE and folded N20ºE/60ºSE and within the surrounding carbonate-quartz-pyrite and locally biotite-carbonate alteration zones of the host mafic volcanic rocks. The deposit has gold resources indicated at 52,300 oz (385,000 mt at 4.23 g/t Au) and inferred at 126,600 oz (966,000 mt at 4.07 g/t Au). The host mafic volcanic rocks are part of the 2717 Ma Macho Formation that exhibit a geochemical signature transitional between mid-ocean and island arc. They are cut by pre-ore diorite, pre- and post-ore quartz-feldspar porphyry (QFP), and quartz monzonite dikes and plugs interpreted to have formed in a volcanic arc to syn-collisional setting. The auriferous veins comprise 5-15% volume of the mafic volcanic rocks, are 1-5cm wide, and locally pinch and swell or are boudinaged. Although the volcanic units strike N55-60ºE and dip 40ºSE, the ore envelope (>2 g/t Au) is constrained from surface to 30m depth in an antiformal shape. Free gold is found in albite-carbonate-quartz veins, syn-mineralization altered host rocks, and locally within quartz veins cutting early QFP dikes. The timing of gold mineralization at the Barry deposit is well constrained by U-Pb zircon dating of pre-mineralization diorite and post-mineralization QFP dikes. Analyses of single zircon grains by thermal ionization mass spectrometry (TIMS) give concordant and overlapping data with indistinguishable ages, yielding an average age of 2697 ± 0.6 Ma that is interpreted as the age of gold mineralization at the Barry deposit. This date indicates that gold mineralization was coeval with regional deformation and magmatism, and is, to our knowledge, the most precise age yet established for Archean lode gold mineralization. This confirms that the Barry lode gold deposit formed during an earlier, pre-2686, deformational period in the late Archean, similar to what was documented in the Kiena, Norlartic and Siscoe (Main Zone) mines in the Southern Abitibi greenstone belt. / Thesis (Master, Geological Sciences & Geological Engineering) -- Queen's University, 2009-05-12 17:18:25.925
16

Meso – and Neoarchean tectonic evolution of the northwestern Superior Province: Insights from a U-Pb geochronology, Nd isotope, and geochemistry study of the Island Lake greenstone belt, Northeastern Manitoba

Parks, Jennifer January 2011 (has links)
What tectonic processes were operating in the Archean, and whether they were similar to the “modern-style” plate tectonics seen operating today, is a fundamental question about Archean geology. The Superior Province is the largest piece of preserved Archean crust on Earth. As such it provides an excellent opportunity to study Archean tectonic processes. Much work has been completed in the southern part of the Superior Province. A well-documented series of discrete, southward younging orogenies related to a series of northward dipping subduction zones, has been proposed for amalgamating this part of the Superior Province. The tectonic evolution in the northwestern Superior Province is much less constrained, and it is unclear if it is related to the series of subduction zones in the southern part of the Superior Province, or if it is related to an entirely different process. Such ideas need to be tested in order to develop a concise model for the Meso – and Neoarchean tectonic evolution of the northwestern Superior Province. To this end, a field mapping, U-Pb geochronology, Nd isotope, and lithogeochemistry study was undertaken in the Island Lake greenstone belt. This granite-greenstone belt is part of the northern margin of the North Caribou terrane, a larger reworked Mesoarchean crustal block located in the northwestern Superior Province. U-Pb TIMS zircon geochronology data shows that the Island Lake greenstone belt experienced a long and complex geological history that included the deposition of three distinct volcanic assemblages at ca. 2897 Ma, 2852 Ma, and 2744 Ma, as well as a younger clastic sedimentary group, the Island Lake group. All of these volcanic assemblages include felsic and mafic volcanic rocks, as well as a suite of contemporaneous plutonic rocks. The U-Pb data set shows that the Savage Island shear zone, a regional fault structure that transects the Island Lake greenstone belt, is not a terrane-bounding feature as correlative supracrustal assemblages are observed on both sides of it. The Nd isotope data shows that the volcanic assemblages and contemporaneous plutons have been variably contaminated by an older ca. 3.0 Ga crustal source. The mafic volcanic rocks in the assemblages have two distinct geochemical signatures, and show a pattern of decreasing crustal contamination with decreasing age. Together these data suggests that the Meso – and Neoarchean volcanic assemblages are part of an intact primary volcanic stratigraphy that were built on the same ca. 3.0 Ga basement and have autochthonous relationships with each other. This basement is the North Caribou terrane. The youngest sedimentary group in the belt, the Island Lake group, was deposited between 2712 Ma and 2699 Ma. It consists of “Timiskaming-type” sedimentary rocks, and is the youngest clastic sedimentary package in the belt. A detailed study of detrital zircons in units from the stratigraphic bottom to the top of the sedimentary group indicates an age pattern of detrital zircons that is most consistent with a scenario in which sediments were deposited in inter-diapiric basins created by diapirism and sagduction (i.e., vertical tectonic) processes. During the diapiric ascent of the felsic material, inter-diapiric basins were formed in the synclines between adjacent domes, into which sediments were deposited. U-Pb zircon TIMS geochronology identified two ages of deformation in the Island Lake greenstone belt. Two dykes that crosscut an older, D1 foliation place a minimum age of ca. 2723 Ma on the D1 deformation, and two syn-kinematic dykes date movement along two transpressional shear zones to 2700 Ma. Together all these data indicate that the tectonic evolution in the Island Lake greenstone belt and in the northwestern Superior Province took place in three main stages. The first two stages involved the generation of Meso – and Neoarchean volcanic assemblages and contemporaneous plutonic rocks due to southward dipping subduction under the North Caribou micro-continent. The third stage involved the deposition of late “Timiskaming-type” sediments during vertical tectonic processes in conjunction with horizontal tectonic movement along late transpressional shear zones at ca. 2.70 Ga. At the end of this process the North Superior superterrane was terminally docked to the North Caribou terrane along the North Kenyon fault. This study shows that while a version of horizontal or “modern” style plate tectonics were operating in the Archean, vertical tectonic processes were also occurring and that these processes operated synchronously in the Neoarchean.
17

The theoretical and practical dimensions of pounamu management

Hope-Pearson, E.W., n/a January 2002 (has links)
The vesting of pounamu back to Te Runanga o Ngai Tahu brings to the fore a whole new dimension of resource mangement to New Zealand�s wider resource management environment. As is highlighted in this study and noted by a number of academics, Maori people, like other indigenous communities, have their own planning systems values and appropriate processes for decision-making about the environment. But the relevance of such indigenous management systems has long been overlooked by the decision makers and authorities to the continued frustration and anxiety of indigenous peoples. This lack of recognition has been at the fore as a concept fundamental to many indigenous peoples grievances, both past and present. The subsequent vesting of pounamu has brought about the validation that Maori have to resource management rights. In identifying issues associated with the management of natural resources by indigenous peoples, this study provides an examination of number theoretical concepts and a practical dimension associated with the management of natural resources by indigenous peoples and has placed pounamu in context. The placement of pounamu in context has provided the basis from which a number of central issues were identified and discussed. A combination a literature study, analysis of an application traditional knowledge in a contemporary context and in-depth interviews and liaison with key stakeholders involved directly and indirectly in the management of pounmau were undertaken, has established that the management of natural resources by indigenous people is more about the management of number of associated processes rather than about the management of a single commodity, in this instance pounamu. Within these processes there exist a number of complex relationships that reflect the fundamental transaction of power and privilege associated with natural resource management. Further conclusions that this study has made, is the increasing need and importance of legislatures and planning professionals alike to further recognise the validity and become familiar with alternate methods of resource management and the application of indigenous systems and methods.
18

Géométrie structurale et évolution tectonique de la ceinture de roches vertes de l'Abitibi (partie nord-ouest) : l'influence des failles à faible pendage /

Lacroix, Sylvain, January 1998 (has links)
Thèse de doctorat (D.R.M.)--Université du Québec à Chicoutimi, 1998. / Document électronique également accessible en format PDF. CaQCU
19

A geological model of shear zone gold deposits in the Pietersburg Greenstone Belt, South Africa

Franey, N J 17 April 2013 (has links)
The Pletersburg greenstone belt Is located In South Africa, about 300 km northeast of Johannesburg. It hosts a significant amount of gold mineralization and just over 1000 kg of gold have been produced from Its various reefs and secondary deposits. The greenstone belt is interpreted as an Archean ophiolite complex. It comprlses a volcano-sedimentary succession (the Pletersburg Group) which Is subdivided Into a basal greenstone sequence, interpreted as oceanic crust, and an upper sedimentary cover sequence. A number of major shear zones, which are thought to represent thrusts that developed during the subduction of the greenstone sequence, form an integral part of the stratigraphy . Four stages of deformation (D₁-D₄) and four phases of metamorphism (H₁-H₄) (three of which are correlatable with the peak stages of deformation) are recognized. The primary gold deposits are all shear zones related. but they are subdivided into greenstone, sedimentation and granIte-hosted types. Geographically, they occur In three distinct goldfields: Eerstellng, Roodepoort and Marbastad. The greenstone-hosted · Plenaar-Doreen shear complex Is In the Eersteiing goldfield and hosts eight gold occurrences. Within the complex, Girlie North Reef is the 640m-long "pay" section of the Girlie North shear zone. This reef is characterized, macroscopically, by a Quartz-carbonate-chlorite-sulphlde assemblage and, mlcroscoplcally, by the presence of tourmaline, arsenopyrlte and Au. Geochemical evidence Indicates that mineralizing fluids were H₂O and CO₂-bearing and rich In S, K and Al. The wall rock alteratlon was Isochemlcal but Is manifest as a change In mineralogy from a hornblende + plagioclase assemblage to an actlnollte/tremollte + Quartz + clay assemblage. This Is best developed In the hangIng wall of the reef and is thought to have been caused by hydrogen ion metasomatism. The Arsenopyrite Reef was one of the main sediment-hosted shear zone gold producers In the Harabastad goldfield. This reef Is Interpreted as the basal margin of a shear zone whose top contact Is probably represented by the Quartz Vein Reef. The shear zone consists predomonantly of quartz and carbonate, and the two "pay" reefs are characterized by tourmallne. arsenopyrite and Au. No wall rock alteration was identified In this study, Based on the mineralogy and geochemical signature of the Girlie Nortn Reef and the Arsenopyrite Reef, It Is proposed that both were formed at the $The Pletersburg greenstone belt Is located In South Africa, about 300 km northeast of Johannesburg. It hosts a significant amount of gold mineralization and just over 1000 kg of gold have been produced from Its various reefs and secondary deposits. The greenstone belt is interpreted as an Archean ophiolite complex. It comprlses a volcano-sedimentary succession (the Pletersburg Group) which Is subdivided Into a basal greenstone sequence, interpreted as oceanic crust, and an upper sedimentary cover sequence. A number of major shear zones, which are thought to represent thrusts that developed during the subduction of the greenstone sequence, form an integral part of the stratigraphy . Four stages of deformation (D₁-D₄) and four phases of metamorphism (H₁-H₄) (three of which are correlatable with the peak stages of deformation) are recognized. The primary gold deposits are all shear zones related. but they are subdivided into greenstone, sedimentation and granIte-hosted types. Geographically, they occur In three distinct goldfields: Eerstellng, Roodepoort and Marbastad. The greenstone-hosted · Plenaar-Doreen shear complex Is In the Eersteiing goldfield and hosts eight gold occurrences. Within the complex, Girlie North Reef is the 640m-long "pay" section of the Girlie North shear zone. This reef is characterized, macroscopically, by a Quartz-carbonate-chlorite-sulphlde assemblage and, mlcroscoplcally, by the presence of tourmaline, arsenopyrlte and Au. Geochemical evidence Indicates that mineralizing fluids were H₂O and CO₂-bearing and rich In S, K and Al. The wall rock alteratlon was Isochemlcal but Is manifest as a change In mineralogy from a hornblende + plagioclase assemblage to an actlnollte/tremollte + Quartz + clay assemblage. This Is best developed In the hangIng wall of the reef and is thought to have been caused by hydrogen ion metasomatism. The Arsenopyrite Reef was one of the main sediment-hosted shear zone gold producers In the Harabastad goldfield. This reef Is Interpreted as the basal margin of a shear zone whose top contact Is probably represented by the Quartz Vein Reef. The shear zone consists predomonantly of quartz and carbonate, and the two "pay" reefs are characterized by tourmallne. arsenopyrite and Au. No wall rock alteration was identified In this study, Based on the mineralogy and geochemical signature of the Girlie Nortn Reef and the Arsenopyrite Reef, It Is proposed that both were formed at the same time. Textural evidence Indicates that tourmaline, arsenopyrite and Au were all very late In the paragenesis of minerallzatlon. The presence of tourmaline also Indicates a probable granite association. It Is proposed that the maln gold mineralizing event was synchronous with the Intrusion of granitoids (and therefore also with (D₁-D₄) and (H₁-H₄) and that most of the Au was derived from felsic magma. Gold was partitioned Into a magmatic hydrothermal fluid and then transported into the greenstone belt as a chlorIde complex. These magmatiC fluids were channelled up shear zones whIch had already been mineralized with a quartz-carbonate-chlorlte - sulphide assemblage by previous metamorphic fluidS. generated during the dynamic (D₂-related) H₂-phase of metamorphism. The Au was then deposIted as the result of a change In a fluid variable, such as temperature, pH, f0₂, or the activity of Cl (some Au may have been transported In a sulphur complex and so the activity of reduced 5 could also have been Important).
20

Geologia, Geoquímica e Evolução Metamórfica das Rochas Meta-Komatiíticas da Unidade Inferior do Greenstone Belt de Umburanas, Estado da Bahia

Santos, André Luis Dias 09 1900 (has links)
Submitted by Everaldo Pereira (pereira.evera@gmail.com) on 2017-02-19T21:13:10Z No. of bitstreams: 1 Dissertacao_Andre_Luis_Santos.pdf: 10542532 bytes, checksum: 392e6cfaed5318d19eb1f54fa34fc56c (MD5) / Made available in DSpace on 2017-02-19T21:13:10Z (GMT). No. of bitstreams: 1 Dissertacao_Andre_Luis_Santos.pdf: 10542532 bytes, checksum: 392e6cfaed5318d19eb1f54fa34fc56c (MD5) / O Greenstone Belt de Umburanas (GBU), de idade arqueana, está localizado na porção centro-oeste do Estado da Bahia. Encontra-se inserido no segmento crustal do Bloco Gavião (BG), no Cráton do São Francisco. O GBU é formado por três unidades litoestratigráficas principais que encerram três ciclos vulcânicos: (i) Unidade Inferior, contendo, na base, rochas vulcânicas metaultramáficas komatiíticas, acompanhadas de meta-basaltos toleiíticos e metadacitos compondo o primeiro ciclo vulcânico, seguidas por quartzitos com leitos meta-conglomeráticos, meta-sedimentos químico-pelíticos (BIF’s, cherts, metacarbonatos e rochas calcissilicáticas) e pulsos discretos de meta-vulcânicas félsicas, atribuídas ao segundo ciclo vulcânico; (ii) Unidade Média, dominada por rochas meta-vulcânicas félsicas do terceiro ciclo vulcânico, com intercalações subordinadas de seus equivalentes piroclásticos, epiclásticos e de derrames máficos e; (iii) Unidade Superior, constituída essencialmente de meta-carbonatos. As rochas meta-komatííticas da Unidade Inferior do GBU, objeto deste estudo, apresentam-se como faixas tectonicamente interrompidas, seguindo os contatos com o embasamento e com os maciços graníticos de Umburanas e Serra do Eixo. Apresentam coloração variando de cinza a cinza esverdeado, granulação fina e uma foliação incipiente. As principais ocorrências dessas rochas estão situadas na Folha cartográfica de Brumado, próximo a estrada de ferro, nas imediações da Serra do Sucuiu e na Folha cartográfica de Tanhaçu, na Serra do Eixo, mais precisamente nas imediações da Fazenda Eixo da Serra. Estudos petrográficos realizados nas rochas meta-komatiíticas revelaram a presença de texturas do tipo cumulática, maciça e spinifex. As rochas foram submetidas a variados graus de serpentinização apresentando uma mineralogia primária constituída por olivina e piroxênio e a secundária composta por serpentina, talco, tremolita e antofilita, e proporções menores de clorita. Apesar dos variados graus de serpentinização, diagramas de mobilidade mostraram pouca mobilização dos elementos químicos. As rochas meta-komatiíticas foram classificadas como peridotitos komatiíticos. Possuem, em média, altos teores de MgO (~33%), Cr (4067 ppm) e Ni (1488 ppm) e baixos conteúdos de álcalis (~0,05%). As razões CaO/Al2O3 e Al2O3/TiO2 caracterizaram as rochas meta-komatiíticas em komatiítos não depletados em Al. Em geral, todos os grupos de meta-komatiítos (cumulato, spinifex e maciço) mostram em maior ou menor proporção enriquecimento em elementos traço altamente incompatíveis (Th, LREE) em relação a uma abundância moderada de elementos incompatíveis litófilos e possuem anomalias negativas de Nb e Sr. Utilizando a temperatura do líquido calculada através da relação T (oC) = 20xMgO+1000 a temperatura dos meta-komatiítos do GBU varia entre 1572° a 1711°C. Os meta-komatiítos da Unidade Inferior do GBU foram derivados provavelmente de plumas rasas dentro de um manto empobrecido, gerando fusão em profundidades menores do que 200 km, pois estas rochas mostram padrões de elementos terras raras pesados plano a quase plano, juntamente com enriquecimento em elementos terras raras leves e elementos incompatíveis, e fracionamento de Nb e Sr. Adicionalmente, anomalias negativas de Nb e Sr e positivas de Th observadas nos pontos apresentados para rochas do Bloco Gavião (BG), provável embasamento do GBU, indica que as rochas gnáissicas-migmatíticas do BG poderiam ser o provável contaminante das rochas meta-komatiíticas do GBU. Recomenda-se a realização de dados isotópicos Sr-Nd para confirmação ou não desta hipótese. / ABSTRACT - Umburanas Greenstone Belt (GBU) of Archean age, is located in the central-western portion of Bahia state. It is inserted into Gavião Block the crustal segment, in the São Francisco Craton. The GBU consists of three main lithostratigraphic units that contain three volcanic cycles: (i) Lower Unit, in the base, containing meta-komatiites rocks, accompanied by tholeitic meta-basalt rocks and meta-dacitic rocks composing the first volcanic cycle, followed by quartzites with meta-conglomerates, chemical-pelitic meta-sediments (BIF's, cherts, meta-carbonates and calcissilicatic rocks) and discrete pulses of felsic meta-volcanic, assigned to the second cycle volcanic, (ii) Unit Average, dominated by felsic meta-volcanic rocks of the third cycle, with subordinate intercalations of pyroclastic equivalents, epiclastics and mafic flows and (iii) Higher Unit, consisting essentially of meta-carbonates. The meta-komatiites rocks of the Lower Unit of GBU, object of this study, are presented as ranges disrupted tectonically, following contacts with the gnaissic-migmatitic basement and Umburanas and Serra do Eixo granite massifs. These meta-komatiite rocks show gray to greenish gray color, fine grained and incipient foliation. The main occurrences of these rocks are located in Brumado cartographic Sheet, near the railroad, near the Serra do Sucuiu and Tanhaçu cartographic Sheet, in the Serra do Eixo, more precisely near of the Eixo da Serra Ranch. Petrographic studies carried out in meta-komatiite rocks revealed the presence of three types of textures: cumulate, massive and spinifex. These rocks show variable degrees of serpentinization process with a primary mineralogical association consisting of olivine and pyroxene and a secondary mineralogy of talc, anthophyllite, tremolite and chlorite in smaller proportions. Although of variable degrees of serpentinization, the diagrams show little mobility dispersion of chemical elements. viii The meta-komatiite rocks were classified as komatiitic peridotites. They have, on average, high amounts of MgO (~ 33%), Cr (4067 ppm) and Ni (1488 ppm) and low content in alkalis (~ 0.05%). The CaO/Al2O3 and Al2O3/TiO2 ratios characterized the meta-komatiite rocks in aluminium undepleted komatiites. In general, all groups of meta-komatiites (cumulato, spinifex and massive) show a greater or lesser extent enrichment in highly incompatible trace elements (Th, LREE) for a moderate abundance in litophile incompatible elements and they have negative anomalies of Nb and Sr. Using the liquid temperature calculated by the relationship T (°C) = 20x1000+MgO the temperature of the metakomatiite rocks of GBU varies between 1572 ° to 1711 °C. The meta-komatiites of Lower Unit of GBU were derivated probably doof the shallow depleted mantle, causing melting at depths less than 200 km, because these rocks show patterns of heavy rare earth elements plan to almost flat, with LREE and incompatible elements enrichment, and fractionation of Nb and Sr. In addition, negative anomalies of Nb and positive Th observed in the gneissic-migmatitic rocks of Gavião Block, probable basement of the GBU, indicates that the gneissic-migmatitic rocks could be the likely contaminant of the rocks of the meta-komatiites. It is recommended that to be made Sr-Nd isotopic analyzes to confirm this hypothesis or not.

Page generated in 0.0486 seconds